Let a be the fourth quadrant angle, and simplify the cosa root number 1 sina 1 sina sina root nu

Updated on educate 2024-05-11
10 answers
  1. Anonymous users2024-02-10

    cosa√(1-sina)/(1+sina)+sina√(1-cosa)/(1+cosa)

    a is the fourth quadrant angle.

    sina 2 + cosa 2 0, sina 2-cosa 2 0, sina 2 and cosa 2 are different names.

    Original = - (cosa 2+sina 2)(cosa 2-sina 2)*(sina 2-cosa 2) (sina 2+cosa 2)-2sina 2*cosa 2*(sina 2) (cosa 2).

    cosa/2-sina/2)^2-2(sina/2)^2

    1-sina-(1-cosa)

    sina+cosa

  2. Anonymous users2024-02-09

    1-sina)/(1+sina)

    1-sina)^2/(1-sina)(1+sina)(1-sina)^2/[1-(sina)^2](1-sina)^2/(cosa)^2

    So the root number is under (1-sina) (1+sina)|1-sina|/|cosa|

    In the same way, under the root number (1-cosa) (1+cosa)|1-cosa|/|sina|

    sina<1,1-sina>0

    Similarly, 1-cosa>0

    a is the fourth quadrant angle.

    sina<0,cosa>0

    So the original formula = cosa*(1-sina) cosa+sina*(1-cosa) (-sina).

    1-sina-1+cosa

    cosa-sina

  3. Anonymous users2024-02-08

    Since it is in the fourth quadrant, cos >0 and sin <0, and then using the denominator is fine.

  4. Anonymous users2024-02-07

    How can it be so simple??

  5. Anonymous users2024-02-06

    1-sina) (1+sina), 1-sina=(1-sina) 2 cavity cherry [1-(sina) 2]=(1-sina) 2 (cosa) 2 (cosa) 2 (1-cosa) (1+cosa)=(1-cosa) 2 (sina) 2 (sina) 2 because sina = 0a is the first quadrant angle containing the second quadrant |sina|=sina,|cosa|=-cosa, so the original =cosa*|1-sina|/|cosa|+sina|1-c...

  6. Anonymous users2024-02-05

    Dear landlord.

    First, multiply the numerator denominator in the root of the first term by 1-cosa, since the square of sina + the square of cosa = 1, so the first term is equal to (1-cosa) sina

    Then multiply the numerator and denominator in the root number of the second term by 1 + cosa at the same time, since the square of sina + the square of cosa = 1, so the second term of the withered number is equal to (1 + cosa) sina

    Finally, the first term is added to the second term to give 2 sina

  7. Anonymous users2024-02-04

    Because a is the third symbolic call limiting angle, the sine cosine is the number of the manuscript of the negative mountain chain, cosa root number (1-sina 2) + 2sina root number (1-cosa 2).

    cosa/(-cosa)+2sina/(-sina)

    1+2x(-1)

  8. Anonymous users2024-02-03

    a is the second quadrant angle, dissipation.

    sinα>0

    Natampisina sin sin = 1- 16 25 = 3 5tan = sin cps = 3 4

  9. Anonymous users2024-02-02

    (1) A is the fourth quadrant angle, then cosa>0 tana<0cosa= (1-sin a)= (1-3 4)=1 2tana=sina cosa=- 3

    2) A is the second quadrant angle, then sina >0 tana<0 sina = (1-cos a) = (1-25 169) = 12 13tana = sina cosa = -12 5

    3) 1/cos²a=(sian²a+cos²a)/cos²a=tan²a+1=(-3/4)²+1=25/16

    cos²a=16/25

    So cosa = 4 5

    sina = (1-cos a) = (1-16 25) = 3 5 two cases (1) cosa = 4 5 sina = -3 5 (2) cosa = -4 5 sina = 3 5

  10. Anonymous users2024-02-01

    This one.. sin is a negative number, and this angle is said to be the fourth in the question of the quadrant sin60=root3 2, then a=2k -60

    2) 5, 12, 13 is the number of valleys, cos is negative, and a is in the second quadrant, so sina>0 tana<0 sina = 12 13 tana = -12 5

    3) 3 4 5 is the Pythagorean number tan<0 This angle is in the 2 4 quadrant, so the positive and negative of sin and cos cannot be determined: sin=3 5, cos=-4, 5

    or sin=-3 5 cos=4 5

Related questions
11 answers2024-05-11

The proof to the right of the inequality is equivalent to (sin +cos) 2 2, i.e., sin 2 +cos 2 +2sin ·cos 2 --equation (1). >>>More

14 answers2024-05-11

The fourth stroke of the eastern character is apostrophe. >>>More

5 answers2024-05-11

Hello! GDP per capita is the second highest in Europe

The level of consumption is sometimes higher than in the UK. >>>More

9 answers2024-05-11

What are the four growth poles of China's economy? Can the Gulf of Tonkin become the Fourth Pole?

8 answers2024-05-11

It's the quest material, which can be found in some of the Gran Carry's maps. >>>More