-
(x2^x)/in2-2^x/(ln^2x)
The partial integral method is as follows:
x2^xdx
1/ln2)∫xd2^x
x2^x)/ln2-(1/ln2)∫2^xdx
x2^x)/in2-2^x/(ln^2x)
Formula for indefinite integrals.
1. A dx = ax + c, a and c are constants.
2. x a dx = [x (a + 1)] (a + 1) +c, where a is a constant and a ≠ 1
3、∫ 1/x dx = ln|x| +c
4. A x DX = (1 LNA)a x + C, where A > 0 and A ≠ 1
5、∫ e^x dx = e^x + c
6、∫ cosx dx = sinx + c
7、∫ sinx dx = - cosx + c
8、∫ cotx dx = ln|sinx| +c = - ln|cscx| +c
-
The final result of finding the indefinite integral x2 xdx using the partial integration method is (x2 x) in2-2 x (ln 2x).
x2^xdx
1/ln2)∫xd2^x
x2^x)/ln2-(1/ln2)∫2^xdx=(x2^x)/in2-2^x/(ln^2x)。
So the final result of finding the indefinite integral x2 xdx using the partial integration method is (x2 x) in2-2 x (ln 2x).
-
The partial integral method is as follows:
x2^xdx
1/ln2)∫xd2^x
x2 x) ln2-(1 ln2) 2 xdx=(x2 x) in2-2 x (ln 2x) indefinite integral.
1, a dx = ax + c, a and c are both constants2, x a dx = [x (a + 1)] (a + 1) +c, where a is a constant and a ≠ 1
3、∫ 1/x dx = ln|x|+c4, a x dx = (1 lna)a x + c, where a > 0 and a ≠ 1
5、∫ e^x dx = e^x + c
6、∫ cosx dx = sinx + c7、∫ sinx dx = - cosx + c8、∫ cotx dx = ln|sinx| +c = - ln|cscx| +c
-
x e xdx=x e x-2xe x+2e x+ is constant.
x²e^xdx
x²d(e^x)
x²e^x-∫e^xd(x²)
x²e^x-∫2xd(e^x)
x²e^x-2xe^x+∫2d(e^x)=x²e^x-2xe^x+2e^x+c
Extended Information: Segment Credits:
uv)'=u'v+uv'
Got:u'v=(uv)'-uv'
Points on both sides get:
u'vdx=∫
uv)'dx
uv'dx stands for: u'vdx
uvuv'd, this is the partial integration formula.
It can also be abbreviated as: VDU
uvudv common integration formula:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/u+1)+c3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2)
dx=arcsinx+c
-
Summary. Hello, please send out the complete question Ha Partial Integral Method to Find Indefinite Integral Calendar: (1) x e Search x dx (2) e (2x) cosx dx Trouble cavity letter writing paper.
Hello, please send out the full question
Use the partial integral method to find the indefinite integrals of these two problems.
It's not easy to count <>
There is one more question.
There's also a question.
The second one I didn't expect to find out directly, the answer can be obtained twice by partial integration, which is more special.
-
The original formula is permeable = - xde (-x).
xe (-x) + shouting missing e (-x)dx
xe^(-x)-e^(-x) (1,0)(-1/e-1/e)-(0-1)
1-2 pure oak
-
Original =- xde (-x).
xe^(-x)+∫e^(-x)dx
xe (-x)-e (-x) (1,0)(-1 Shenhuyan e-1 e)-(0-1).
1-2 You Yu E,5, why is it not used (b,a)udv=uv|(b,a)- b,a)vdu is in the formula,
-
False, correct as follows:
m=∫e^(-2x)sin(x/2)dx
1/2)∫sin(x/2)d[e^(-2x)]
1/2)sin(x/2)e^(-2x)-(1/2)∫e^(-2x)d[sin(x/2)]
1/2)sin(x/2)e^(-2x)+(1/4)∫e^(-2x)cos(x/2)dx
1/2)sin(x/2)e^(-2x)+(1/8)∫cos(x/2)d[e^(-2x)]
1/2)sin(x/2)e^(-2x)+(1/8)cos(x/2)e^(-2x)+(1/8)∫e^(-2x)dcos(x/2)
1/2)sin(x/2)e^(-2x)+(1/8)cos(x/2)e^(-2x)+(1/16)∫e^(-2x)sin(x/2)dx
1/2)sin(x/2)e^(-2x)+(1/8)cos(x/2)e^(-2x)+(1/16)m
Thus m=(16 17)*[1 2)sin(x 2)e (-2x)+(1 8)cos(x 2)e (-2x)]+c
2/17)e^(-2x)[ 4sin(x/2) +cos(x/2)] c
Let x=atanu, then dx=a(secu) 2 du, dx (x 2+a 2) = secu du
secu(secu+tanu) / (secu+tanu) du >>>More
1. [Monthly Awards] The top 20 of the weekly "Knowing Star", the weekly "Rising Points Ranking", and the top 10 of the "Total Points Ranking" updated at 10 am on the 21st of the month. Different gifts that can be received. >>>More
In Excel, only the function with the integral symbol can be displayed, but the integration operation cannot be realized. >>>More
2 years ago - Python Solving Indefinite IntegralsNext, we will introduce the above indefinite integral solving. Start by importing all the classes and functions in the Sympy library. from sympy import *Next we need to define the symbolic variable x that we need to use this time.
1. [Material Rewards] The top 20 of the weekly "Knowing Star", the weekly "Rising Points Ranking", and the top 10 of the "Total Points Ranking" updated at 10 am on the 21st of the month. Different gifts that can be received. >>>More