Use the partial integration method to find sinx e ax dx

Updated on physical education 2024-04-28
8 answers
  1. Anonymous users2024-02-08

    (x2^x)/in2-2^x/(ln^2x)

    The partial integral method is as follows:

    x2^xdx

    1/ln2)∫xd2^x

    x2^x)/ln2-(1/ln2)∫2^xdx

    x2^x)/in2-2^x/(ln^2x)

    Formula for indefinite integrals.

    1. A dx = ax + c, a and c are constants.

    2. x a dx = [x (a + 1)] (a + 1) +c, where a is a constant and a ≠ 1

    3、∫ 1/x dx = ln|x| +c

    4. A x DX = (1 LNA)a x + C, where A > 0 and A ≠ 1

    5、∫ e^x dx = e^x + c

    6、∫ cosx dx = sinx + c

    7、∫ sinx dx = - cosx + c

    8、∫ cotx dx = ln|sinx| +c = - ln|cscx| +c

  2. Anonymous users2024-02-07

    The final result of finding the indefinite integral x2 xdx using the partial integration method is (x2 x) in2-2 x (ln 2x).

    x2^xdx

    1/ln2)∫xd2^x

    x2^x)/ln2-(1/ln2)∫2^xdx=(x2^x)/in2-2^x/(ln^2x)。

    So the final result of finding the indefinite integral x2 xdx using the partial integration method is (x2 x) in2-2 x (ln 2x).

  3. Anonymous users2024-02-06

    The partial integral method is as follows:

    x2^xdx

    1/ln2)∫xd2^x

    x2 x) ln2-(1 ln2) 2 xdx=(x2 x) in2-2 x (ln 2x) indefinite integral.

    1, a dx = ax + c, a and c are both constants2, x a dx = [x (a + 1)] (a + 1) +c, where a is a constant and a ≠ 1

    3、∫ 1/x dx = ln|x|+c4, a x dx = (1 lna)a x + c, where a > 0 and a ≠ 1

    5、∫ e^x dx = e^x + c

    6、∫ cosx dx = sinx + c7、∫ sinx dx = - cosx + c8、∫ cotx dx = ln|sinx| +c = - ln|cscx| +c

  4. Anonymous users2024-02-05

    x e xdx=x e x-2xe x+2e x+ is constant.

    x²e^xdx

    x²d(e^x)

    x²e^x-∫e^xd(x²)

    x²e^x-∫2xd(e^x)

    x²e^x-2xe^x+∫2d(e^x)=x²e^x-2xe^x+2e^x+c

    Extended Information: Segment Credits:

    uv)'=u'v+uv'

    Got:u'v=(uv)'-uv'

    Points on both sides get:

    u'vdx=∫

    uv)'dx

    uv'dx stands for: u'vdx

    uvuv'd, this is the partial integration formula.

    It can also be abbreviated as: VDU

    uvudv common integration formula:

    1)∫0dx=c

    2)∫x^udx=(x^(u+1))/u+1)+c3)∫1/xdx=ln|x|+c

    4)∫a^xdx=(a^x)/lna+c

    5)∫e^xdx=e^x+c

    6)∫sinxdx=-cosx+c

    7)∫cosxdx=sinx+c

    8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2)

    dx=arcsinx+c

  5. Anonymous users2024-02-04

    Summary. Hello, please send out the complete question Ha Partial Integral Method to Find Indefinite Integral Calendar: (1) x e Search x dx (2) e (2x) cosx dx Trouble cavity letter writing paper.

    Hello, please send out the full question

    Use the partial integral method to find the indefinite integrals of these two problems.

    It's not easy to count <>

    There is one more question.

    There's also a question.

    The second one I didn't expect to find out directly, the answer can be obtained twice by partial integration, which is more special.

  6. Anonymous users2024-02-03

    The original formula is permeable = - xde (-x).

    xe (-x) + shouting missing e (-x)dx

    xe^(-x)-e^(-x) (1,0)(-1/e-1/e)-(0-1)

    1-2 pure oak

  7. Anonymous users2024-02-02

    Original =- xde (-x).

    xe^(-x)+∫e^(-x)dx

    xe (-x)-e (-x) (1,0)(-1 Shenhuyan e-1 e)-(0-1).

    1-2 You Yu E,5, why is it not used (b,a)udv=uv|(b,a)- b,a)vdu is in the formula,

  8. Anonymous users2024-02-01

    False, correct as follows:

    m=∫e^(-2x)sin(x/2)dx

    1/2)∫sin(x/2)d[e^(-2x)]

    1/2)sin(x/2)e^(-2x)-(1/2)∫e^(-2x)d[sin(x/2)]

    1/2)sin(x/2)e^(-2x)+(1/4)∫e^(-2x)cos(x/2)dx

    1/2)sin(x/2)e^(-2x)+(1/8)∫cos(x/2)d[e^(-2x)]

    1/2)sin(x/2)e^(-2x)+(1/8)cos(x/2)e^(-2x)+(1/8)∫e^(-2x)dcos(x/2)

    1/2)sin(x/2)e^(-2x)+(1/8)cos(x/2)e^(-2x)+(1/16)∫e^(-2x)sin(x/2)dx

    1/2)sin(x/2)e^(-2x)+(1/8)cos(x/2)e^(-2x)+(1/16)m

    Thus m=(16 17)*[1 2)sin(x 2)e (-2x)+(1 8)cos(x 2)e (-2x)]+c

    2/17)e^(-2x)[ 4sin(x/2) +cos(x/2)] c

Related questions
6 answers2024-04-28

Let x=atanu, then dx=a(secu) 2 du, dx (x 2+a 2) = secu du

secu(secu+tanu) / (secu+tanu) du >>>More

2 answers2024-04-28

1. [Monthly Awards] The top 20 of the weekly "Knowing Star", the weekly "Rising Points Ranking", and the top 10 of the "Total Points Ranking" updated at 10 am on the 21st of the month. Different gifts that can be received. >>>More

11 answers2024-04-28

In Excel, only the function with the integral symbol can be displayed, but the integration operation cannot be realized. >>>More

13 answers2024-04-28

2 years ago - Python Solving Indefinite IntegralsNext, we will introduce the above indefinite integral solving. Start by importing all the classes and functions in the Sympy library. from sympy import *Next we need to define the symbolic variable x that we need to use this time.

4 answers2024-04-28

1. [Material Rewards] The top 20 of the weekly "Knowing Star", the weekly "Rising Points Ranking", and the top 10 of the "Total Points Ranking" updated at 10 am on the 21st of the month. Different gifts that can be received. >>>More