-
So. The original inequality is.
4sin cos sin (1-cos) because (0, ], so sin is greater than or equal to 0
So the inequality is reduced to.
4cosα≤1/(1-cosα)
Only proof is required.
cosα(1-cosα)≤1/4
If cos 0
cosα(1-cosα)≤0
Established cos (1-cos) 1 4
If cos 0
then cos (1-cos) 2 = 1 4
Also established. Certification.
-
Certificate: If the left and right are equal.
If (0, ).
sinα>0,1-cosα>0;
2sin2α-sinα/(1-cosα)=sinα/(1-cosα)*4(cosα)^2+4cosα-1]
2cos -1) 2*sin (1-cos) 0 In summary. 2sin2 sin (1-cos).
-
4sinxcosx≤sinα/(1-cosα)4sinx(cosx-1/(1-cosx))≤0sinx>=0
Then cosx-1 (1-cosx) 0
cosx-cos^2x-1)(1-cosx)≤01-cosx>0
cosx-cos^2x-1≤0
cosx is between (1,-1).
The parabola opens downwards and has no intersection with the x-axis.
Then it holds. Hence 2sin2 sin (1-cos).
-
The original formula becomes 2sin2 -sin (1-cos) 02sin cos -sin (1-cos ) 0sin >=0 divided by sin 2 on both sides
2cosα-1/(1-cosα)≤0
1-cos >=0 multiply 1-cos on both sides at the same time
2cosα(1-cosα)-1≤0
Left = 2cos -2cos *2cos -1-[2(cos -1 2) 2+1 2].
This equation sub 0 original formula is proved.
-
1 All sins 1-cos = 2sin( 2)cos( 2) 2sin( 2) 2=cos( 2) sin( 2) = cot( 2), let k = cot( 2), have:
tan( 2)=1 k,tan =2tan( 2) [1-tan( 2) 2]=2k (k 2-1),sin 2=tan 2 (tan 2+1),cos 2=1 (tan 2+1),sin2 2=(2sin cos) 2=4*sin 2cos 2=4*tan 2 (tan 2+1) 2, (0, 2), 2 (0, )sin2 >0,tan >0,k=1 tan >0,2sin2 =2 [4*tan 2 (tan 2+1) 2]=4*tan (tan 2+1)=8*(k 3-k) (k 4+2k 2+1),2sin2 -sin (1-cos )=8*(k 3-k) (k 4+2k 2+1)-k=(-k 5+6k 3-9k) (k 4+2k 2+1)=-k*(k 2-3) 2 (k 2+1) 2, Since k>0,-k*(k2-3)2(k2+1) 2<0, 2sin2 -sin (1-cos) < 0,2sin2 0, so 2sin2 -sin (1-cos) >0, in summary, 0, 2], 2sin2 sin (1-cos).
-
Proof: If left and right are equal.
If (0, ).
sinα>0,1-cosα>0;
2sin2α-sinα/(1-cosα)=sinα/(1-cosα)*4(cosα)^2+4cosα-1]
2cos -1) 2*sin (1-cos) 0 In summary.
-
2sin2α-sinα/(1-cosα)=4sinαcosα-sinα/(1-cosα)
(1-cos )4sin cos -sin ) (1-cos )=sin (4cos -4cos 2-1) (1-cos )=-sin(2cos -1) 2 (1-cos) because belongs to (0, ).
So sin >0, cos belongs to (-1,1), 1-cos >0 and because (2cos -1) 2>=0
So-sin(2cos -1) 2 (1-cos)<0 so 2sin2
-
(1)α=x
0,0(sinx) 2,cosx>(cosx) 2sinx+cosx>(sinx) 2+(cosx) 2=1(2)
-
2sin2 hail sin (1-cos) proves: if the left and right are equal to the state He Fan.
If pat (0, ).
sinα>0,1-cosα>0;
2sin2α-sinα/(1-cosα)=sinα/(1-cosα)*4(cosα)^2+4cosα-1]
2cos -1) 2*sin (1-cos) 0 In summary. 2sin2α≤sinα/(1-cosα)
-
(0, read hail early).
sinα>0,1-cosα>0;
2sin2 -sin (1-cos) = sin (1-cos) *4 (cos) 2+4cos -1].
2cos -1) 2*sin (1-cos) 0 In summary, 2sin2< sin (1-cos) < p>
-
Cartesian coordinate plane.
Let the terminal edge of the acute angle intersect the unit circle and the point p,a(1,0) sinusoidal mp sin
Tangent at= tan
Apparently mp1 2 sin
sin to sum up. sinα<αtanα
Answer:- 6 b 4
1/2≤sinb≤ √2/2 >>>More
cos( -2 ) = -cos2 = - (square of cos - square of sin).
The square of the sin = 2 the square of 3 = 4 9 >>>More
6(sina) 2+sina*cosa-2(cosa) 2=03sina+2cosa)(2sina-cosa)=03sina+2cosa=0 or 2sina-cosa=0tana=-2 3 or tana=1 2 >>>More
Solution: Because f(x) = 3sin x-2sin 2( x 2) 3sin x+cos x-1 >>>More
Substituting x into f(x) to get the equation of x, and then g(x) will know the intersection of the x-axis, then y is equal to o, that is, g(x)=0, and the next thing is to simplify the sin bracket and open it, there is a formula, this will not happen, you don't have to do ......Two will be eliminated, and then there will be two sinxcos....Addition Merge together, there is also a formula, do it yourself, you do it yourself, and see this is basically what you do.