It is known that 0, , and 2sin2 sin 1 cos is verified

Updated on educate 2024-04-11
11 answers
  1. Anonymous users2024-02-07

    So. The original inequality is.

    4sin cos sin (1-cos) because (0, ], so sin is greater than or equal to 0

    So the inequality is reduced to.

    4cosα≤1/(1-cosα)

    Only proof is required.

    cosα(1-cosα)≤1/4

    If cos 0

    cosα(1-cosα)≤0

    Established cos (1-cos) 1 4

    If cos 0

    then cos (1-cos) 2 = 1 4

    Also established. Certification.

  2. Anonymous users2024-02-06

    Certificate: If the left and right are equal.

    If (0, ).

    sinα>0,1-cosα>0;

    2sin2α-sinα/(1-cosα)=sinα/(1-cosα)*4(cosα)^2+4cosα-1]

    2cos -1) 2*sin (1-cos) 0 In summary. 2sin2 sin (1-cos).

  3. Anonymous users2024-02-05

    4sinxcosx≤sinα/(1-cosα)4sinx(cosx-1/(1-cosx))≤0sinx>=0

    Then cosx-1 (1-cosx) 0

    cosx-cos^2x-1)(1-cosx)≤01-cosx>0

    cosx-cos^2x-1≤0

    cosx is between (1,-1).

    The parabola opens downwards and has no intersection with the x-axis.

    Then it holds. Hence 2sin2 sin (1-cos).

  4. Anonymous users2024-02-04

    The original formula becomes 2sin2 -sin (1-cos) 02sin cos -sin (1-cos ) 0sin >=0 divided by sin 2 on both sides

    2cosα-1/(1-cosα)≤0

    1-cos >=0 multiply 1-cos on both sides at the same time

    2cosα(1-cosα)-1≤0

    Left = 2cos -2cos *2cos -1-[2(cos -1 2) 2+1 2].

    This equation sub 0 original formula is proved.

  5. Anonymous users2024-02-03

    1 All sins 1-cos = 2sin( 2)cos( 2) 2sin( 2) 2=cos( 2) sin( 2) = cot( 2), let k = cot( 2), have:

    tan( 2)=1 k,tan =2tan( 2) [1-tan( 2) 2]=2k (k 2-1),sin 2=tan 2 (tan 2+1),cos 2=1 (tan 2+1),sin2 2=(2sin cos) 2=4*sin 2cos 2=4*tan 2 (tan 2+1) 2, (0, 2), 2 (0, )sin2 >0,tan >0,k=1 tan >0,2sin2 =2 [4*tan 2 (tan 2+1) 2]=4*tan (tan 2+1)=8*(k 3-k) (k 4+2k 2+1),2sin2 -sin (1-cos )=8*(k 3-k) (k 4+2k 2+1)-k=(-k 5+6k 3-9k) (k 4+2k 2+1)=-k*(k 2-3) 2 (k 2+1) 2, Since k>0,-k*(k2-3)2(k2+1) 2<0, 2sin2 -sin (1-cos) < 0,2sin2 0, so 2sin2 -sin (1-cos) >0, in summary, 0, 2], 2sin2 sin (1-cos).

  6. Anonymous users2024-02-02

    Proof: If left and right are equal.

    If (0, ).

    sinα>0,1-cosα>0;

    2sin2α-sinα/(1-cosα)=sinα/(1-cosα)*4(cosα)^2+4cosα-1]

    2cos -1) 2*sin (1-cos) 0 In summary.

  7. Anonymous users2024-02-01

    2sin2α-sinα/(1-cosα)=4sinαcosα-sinα/(1-cosα)

    (1-cos )4sin cos -sin ) (1-cos )=sin (4cos -4cos 2-1) (1-cos )=-sin(2cos -1) 2 (1-cos) because belongs to (0, ).

    So sin >0, cos belongs to (-1,1), 1-cos >0 and because (2cos -1) 2>=0

    So-sin(2cos -1) 2 (1-cos)<0 so 2sin2

  8. Anonymous users2024-01-31

    (1)α=x

    0,0(sinx) 2,cosx>(cosx) 2sinx+cosx>(sinx) 2+(cosx) 2=1(2)

  9. Anonymous users2024-01-30

    2sin2 hail sin (1-cos) proves: if the left and right are equal to the state He Fan.

    If pat (0, ).

    sinα>0,1-cosα>0;

    2sin2α-sinα/(1-cosα)=sinα/(1-cosα)*4(cosα)^2+4cosα-1]

    2cos -1) 2*sin (1-cos) 0 In summary. 2sin2α≤sinα/(1-cosα)

  10. Anonymous users2024-01-29

    (0, read hail early).

    sinα>0,1-cosα>0;

    2sin2 -sin (1-cos) = sin (1-cos) *4 (cos) 2+4cos -1].

    2cos -1) 2*sin (1-cos) 0 In summary, 2sin2< sin (1-cos) < p>

  11. Anonymous users2024-01-28

    Cartesian coordinate plane.

    Let the terminal edge of the acute angle intersect the unit circle and the point p,a(1,0) sinusoidal mp sin

    Tangent at= tan

    Apparently mp1 2 sin

    sin to sum up. sinα<αtanα

Related questions
11 answers2024-04-11

Answer:- 6 b 4

1/2≤sinb≤ √2/2 >>>More

7 answers2024-04-11

cos( -2 ) = -cos2 = - (square of cos - square of sin).

The square of the sin = 2 the square of 3 = 4 9 >>>More

9 answers2024-04-11

6(sina) 2+sina*cosa-2(cosa) 2=03sina+2cosa)(2sina-cosa)=03sina+2cosa=0 or 2sina-cosa=0tana=-2 3 or tana=1 2 >>>More

10 answers2024-04-11

Solution: Because f(x) = 3sin x-2sin 2( x 2) 3sin x+cos x-1 >>>More

8 answers2024-04-11

Substituting x into f(x) to get the equation of x, and then g(x) will know the intersection of the x-axis, then y is equal to o, that is, g(x)=0, and the next thing is to simplify the sin bracket and open it, there is a formula, this will not happen, you don't have to do ......Two will be eliminated, and then there will be two sinxcos....Addition Merge together, there is also a formula, do it yourself, you do it yourself, and see this is basically what you do.