-
Answer:- 6 b 4
1/2≤sinb≤ √2/2
3sin a-2sin b=2sinasin b=3sin a 2 - sina (3 2) (sina-1 3) -1 6 [-1 2, 2 2]2 3 sina 1 or -1 3 sina 0sin b-1 2sina = 3sin a 2 - sina-1 2sina
3sin²a/2-3sina/2
3/2(sina-1/2)²-3/8
1 3 3 2 (sina-1 2) -3 8 0 or 0 3 2 (sina-1 2) -3 8 2 3
i.e.: -1 3 sin b-1 2sina 0 or 0 sin b-1 2sina 2 3
The minimum value of sin b-1 2sina is -1 3
-
sin^2b=(3sin^2a-2sina)/2,sin^2 b-1/2sina
3/2(sina-1/2)^2-3/8.
6 b 4, when sina = 1 2, sin 2 b-1 2sina has a minimum value, the minimum value is -3 8
-
Let f(x)=1
xsinx(0 x 1), then f (x) = xcosx?sinxx2 when 0 x 1, x tanx, f (x)=xcosx?sinxx2tanxcosx?sinx
x20,f(x)=1
xsinx decreases monotonically over the interval (0,1), f(1) f(1 f(15, i.e., sin1
sin1 Shen Zheng sin1
i.e. wide ascension sin1 3sin1
5sin1c b laughing sleepy a so the answer is: c b a
-
sin(3 +a) = 2sin(3 2+a) i.e. -sina = -2cosa
tana=2
sina-4cosa) (5sina+2cosa) numerator and denominator are divided by cosa.
tana-4) liquid accompaniment (5tana+2).
Friends who ask questions on the mobile phone will comment on the upper right corner of the client and bury the price point [evaluation], and then you can choose [satisfied, the problem has been perfectly solved].
-
TANA=2 YIELDS SINA=2COSAA=(1 2)XSINA
Then combine sin a+cos a=1 ==sin a+1 4(sin a)=1==>sin a=4 5
sin²a+2sinαcosa+2=sin²a+2sinαx(1/2)xsina+2=sin²a+sin²a+2=2sin²a+2
Place sin a = 4 5
Substituting yields sin a+2sin cosa+2=2sin a+2=18 5
-
sin(3 +a) = 2sin(3 2+a), left = sin(3 2+3 2+a).
sin(3π/2)cos(3π/2+a)+sin(3π/2+a)cos(3π/2)
cos(3π/2+a)
cos(π/2+a)
sina right = 2sin (3 2+a).
2sin(π/2+a)
2cosa, so -sina=-2cosa
tana=2
Is the denominator 5sina+2cosa?
sina-4cosa) (5sina+2cosa) numerator denominator is also punished with cosa.
tana-4)/(5tana+2)
-
Establish. a=sina,b=sinb,c=sinc
Because the omen is copying.
0-pi 2, the sin function is an increase function, and the maximum value of a corresponds to the maximum value of sina, which is the same reason.
The maximum value of a+b+c also corresponds to the maximum value of a+b+c.
sin²a+sin²b+sin²c=1
So. a²+b²+c²=1
a+b+c)²=a²+b²+c²+2ab+2ac+2bc
Because 2ab<=a +b, 2ac<=a +c, 2bc<=c bridge jujube + b
So. a+b+c)²=a²+b²+c²+2ab+2ac+2bc<=3(a²+b²+c²)=3
a+b+c<=3^
The equal sign is only true when a, b, and c are equal, so when a=b=c=3 there is a maximum, and the angle value for the Tao is at this time.
arcsin
So the maximum value of a+b+c is .
3arcsin
-
sin²a+sin²b=2sin²c
The concept of the strings is not set by Zhengzai.
a^2+b^2=2c^2
Substituting the cosine theorem:
cosc=(a^2+b^2-
c^2)(2ab)=
c^2(2ab)
So: cosc>0
c is the acute angle of the segment, and the maximum is 90 degrees.
-
2sin = 3sin stove sells -2sin because - reputation type 6 4 so 0 2sin 1 both 0 3sin -2sin 1
Let x=sin take 0 3x -2x 1 to get -1 3 x 0 or 2 3 x 1
sin -1 2sin =3 2sin -sin -1 2sin =3 2(sin -sin) 3 2(x -x) because -1 3 x 0 or 2 3 x 1
So when x = 2 3, 3 2 (x -x) minimum is -4 27
-
Because 0<=sinb<=1
So 0<=2sin b<=2;
2sin²b = 2sina-3sin²a;
0<=2sina-3sin a<=2, and -1<=sina<=1;
0<=sina<=2 3; (2sina-3sin a<=2 is constant because 2sina<=2<=2+3sin a).
sin²a+sin²b = sin²a + 1/2*(2sina-3sin²a) = sina-1/2*sin²a=1/2*(1-(sina-1)^2);
Let sina=x; f(x)=1 2(1-(x-1) 2); 0<=x<=2/3;
On the interval [0,2 3], f(x) is a single-drop increment function, so it can be found.
The maximum value is f(2 3) = 4 9; The minimum value f(0)=0;
The value range is [0,4 9].
-
Let a=sin ,b=sin ,-1<=a<=1,-1<=b<=13a 2-2a+2b 2=0
b^2=(2a-3a^2)/2
Because 0<=b 2<=1
So 0<=(2a-3a 2) 2<=1
The solution is 0<=a<=2 3
So the original formula. a^2+b^2
a^2+(2a-3a^2)/2
a^2/2+a
1/2(a-1)^2+1/2
Therefore, when a=0, the minimum value is -1, 2(0-1), 2+1, 2=0, and when a=2 3, the maximum value is -1, 2(2, 3-1) 2+1, 2=4 9, so the range of values of the original formula is [0, 4, 9].
Knowing a>0, b=, c=, try to compare the size of a, b, c.
Solution: a>0, b=, c= >>>More
The main part of whzany is correct, but the clear statement should be: >>>More
Of course not. Acne on the face is due to internal heat in the body, give you a Chinese medicine prescription: raw land 30g, danpi 9, red peony 9, coptis 10, skullcap 10, mulberry leaf 15, cicada clothes 10 (head and feet), angelica sinensis 10, prunella vulgaris 10, fried curcuma triangular 10 decoction. >>>More
Knowing that a and b are inverse numbers to each other, c and d are reciprocal to each other, and the absolute value of x is equal to 5, try to find the value of x + (a + b + cd) x + (a + b) 2007 (power of ) + cd) 2008 power of the law. >>>More
Turn the machine upside down, remove the battery, remove all the screws on the back, and you can see the fan.