It is known that 5 13sinX 12 13cosX 0 6 is found cosX

Updated on educate 2024-04-20
5 answers
  1. Anonymous users2024-02-08

    Original -5 13sinx+12 13cosx=-5sinx+12cosx=

    Let x=90'+x

    So -5sin(90+x)+12cos(90+x)=finish-5cosx-12sinx=

    1)-60sinx+144cosx=

    2)-60sinx-25cosx=39

    Synopid: cosx=

    Original -5 13sinx+12 13cosx=This formula is sub-formed: asinx+bcosx= (A 2+b 2)cos(x+ )

    So the original formula is equal to (-5 13) 2+(12 13) 2cos(x+ )=cos(x+ )

    tanφ=b/a

    And then it should be able to do it too.

  2. Anonymous users2024-02-07

    Because (-5 13) 2+(12 13) 2=1, sin = 12 13, cos = -5 13, ( 2

    So -5 13sinx+12 13cosxcos sinx+sin cosx

    sin(α+x)=

    Thus, cos( +x)=+- 1-sin( +x) 2]cos =cos[( x)-

    cos(+x)cos+sin(+x)sin -56 65 or -16 65

  3. Anonymous users2024-02-06

    1/(sin²xcos²x)dx

    4/(4sin²xcos²x)dx

    1/sin²2xdx

    csc²2x

    d(2x)-2cot2x

    c I hope I can help Chong He Xun to you, you can ask if you don't know how to shoot nonsense, if you solve this problem, please click below"Satisfactory is selected"Button.

  4. Anonymous users2024-02-05

    Because (sinx) 2+(cosx) 2=1 is good to consume (-cosx-7 13) 2+(cosx) 2=12(cosx) 2+14 13cosx-120 bridge 169=0, so cosx=-12 Youshan 13

    sinx=5/13

    cosx+2sinx=-12/13+10/13=-2/13

  5. Anonymous users2024-02-04

    Original formula = 1 (1+(cosx) 2) dx numerator and denominator divided by (cosx) 2

    (secx) 2 ((secx) 2+1) dx= 1 ((secx) 2+1) d (tanx) = 1 ((tanx) 2+2) d (tanx) set of formulas = 1 2*arctan((tanx) 2)+c

Related questions
10 answers2024-04-20

Solution: Because f(x) = 3sin x-2sin 2( x 2) 3sin x+cos x-1 >>>More

8 answers2024-04-20

Analysis] Inverse matrix definition: If the nth-order matrix a and b satisfy ab=ba=e, then a is said to be reversible, and the inverse matrix of a is b. >>>More

13 answers2024-04-20

Solution: According to the problem, the value range of the graph is in the upper part of the abscissa x-axis: that is, the value of the positive rotation curve x is: 2k

15 answers2024-04-20

x)=loga[(1-x)(x+3)]=0=loga(1)then (1-x)(x+3)=1

x^2-2x+3=1 >>>More

10 answers2024-04-20

sn+s(n-1)=an^2

s(n-1)-s(n-2)=a(n-1) 2 is subtracted by the formula, and the left side is an+an-1 >>>More