-
Original -5 13sinx+12 13cosx=-5sinx+12cosx=
Let x=90'+x
So -5sin(90+x)+12cos(90+x)=finish-5cosx-12sinx=
1)-60sinx+144cosx=
2)-60sinx-25cosx=39
Synopid: cosx=
Original -5 13sinx+12 13cosx=This formula is sub-formed: asinx+bcosx= (A 2+b 2)cos(x+ )
So the original formula is equal to (-5 13) 2+(12 13) 2cos(x+ )=cos(x+ )
tanφ=b/a
And then it should be able to do it too.
-
Because (-5 13) 2+(12 13) 2=1, sin = 12 13, cos = -5 13, ( 2
So -5 13sinx+12 13cosxcos sinx+sin cosx
sin(α+x)=
Thus, cos( +x)=+- 1-sin( +x) 2]cos =cos[( x)-
cos(+x)cos+sin(+x)sin -56 65 or -16 65
-
1/(sin²xcos²x)dx
4/(4sin²xcos²x)dx
1/sin²2xdx
csc²2x
d(2x)-2cot2x
c I hope I can help Chong He Xun to you, you can ask if you don't know how to shoot nonsense, if you solve this problem, please click below"Satisfactory is selected"Button.
-
Because (sinx) 2+(cosx) 2=1 is good to consume (-cosx-7 13) 2+(cosx) 2=12(cosx) 2+14 13cosx-120 bridge 169=0, so cosx=-12 Youshan 13
sinx=5/13
cosx+2sinx=-12/13+10/13=-2/13
-
Original formula = 1 (1+(cosx) 2) dx numerator and denominator divided by (cosx) 2
(secx) 2 ((secx) 2+1) dx= 1 ((secx) 2+1) d (tanx) = 1 ((tanx) 2+2) d (tanx) set of formulas = 1 2*arctan((tanx) 2)+c
Solution: Because f(x) = 3sin x-2sin 2( x 2) 3sin x+cos x-1 >>>More
Analysis] Inverse matrix definition: If the nth-order matrix a and b satisfy ab=ba=e, then a is said to be reversible, and the inverse matrix of a is b. >>>More
Solution: According to the problem, the value range of the graph is in the upper part of the abscissa x-axis: that is, the value of the positive rotation curve x is: 2k
x)=loga[(1-x)(x+3)]=0=loga(1)then (1-x)(x+3)=1
x^2-2x+3=1 >>>More
sn+s(n-1)=an^2
s(n-1)-s(n-2)=a(n-1) 2 is subtracted by the formula, and the left side is an+an-1 >>>More