-
Gen No. (1+sin40°) - Gen No. (1-sin40°), Gen Shiji Town No. (1+cos50) - Gen No. (1-cos50), Gen Fengju No. (1+2cos 25-1) - Gen No. (1-2sin 25-1), Gen No. 2cos25 - Gen Sou Coarse No. 2sin25
2sin(25-45)
2sin20
-
√(1-sinα)+1+sinα)
(sin²(α2)+cos²(α2)-2sin(α/2)cos(α/2))
(sin²(α2)+cos²(α2)+2sin(α/2)cos(α/2))
(sin(α/2)-cos(α/2))²sin(α/2)+cos(α/2))²
sin(α/2)-cos(α/2)|+sin(α/2)+cos(α/2)|
When a (0, 2), cos( 2) sin( 2) 0
Original formula = cos( 2) -sin ( 2) + cos ( 2) + sin ( 2) = 2 cos( 2).
When [2, ), 0 cos( 2) sin( 2).
Original formula = sin( 2)-cos( 2) + sin( 2) + cos( 2) = 2sin( 2).
-
1-sin = [sin( 2)-cos( 2)] 1+sin = [sin( 2)+cos( 2)] root number(1-sin) + root number(1+sin)=|sin(α/2)-cos(α/2)|+sin(α/2)+cos(α/2)
2sin (2), (2 times).
Root number (1-sin) + root number (1+sin) = |sin(α/2)-cos(α/2)|+sin(α/2)+cos(α/2)
2cos(2), (0< <2).
-
Solution: original = root number ((sin( 2)-cos( 2)) 2) + root number ((sin( 2) + cos( 2)) 2).
1) When 2< ", sin( 2)-cos( 2)>0, then.
Original formula = sin(2)-cos(2)+sin(2)+cos(2).
2sin(α/2)
2) When 0< 2, sin(2)-cos(2)<0, then.
Original formula = sin(2)-cos(2)+sin(2)+cos(2).
2cos(α/2)
-
The root number (1-sin) + root number (1+sin) is very cumbersome to write, and it may not be clear, mainly using two formulas: sina 2+cosa 2=1, sin2a=2sinacosa
0 2 2, so sin(a 2)>0, cos(a 2)>0 can be brought in, and the root number can be crossed out.
-
Think of sina as a double angle, and write 1 to get a perfectly flat way. Pay attention to positive and negative discussions.
-
Solution: From the meaning of the question, it can be obtained: <2 , so 2< 2< so cos( 2)>0
1+cosθ=2[cos(θ/2)]^2
So [(1+cos) = 2cos(2)
-
You may have missed a square. Once you add it, it's easy to simplify.
-
Root number (1-2sin40° cos40°) cos40° - root number (1-sin50°) = root number ((sin40°-cos40°) 2 ) cos40° - root number ( (cos25°-sin25°) 2 ) = (sin40°-cos40°) cos40°- cos25°-sin25°) = tan40°- 1- root number 2 sin(45°-25°) = tan40°- 1- root number 2 sin20°
a-b)*(a-b) (a+b)*(a+b) 2(a*a-b*b) = --
a*a - b*b a*a - b*b a*a + b*b2(a*a + b*b) 2(a*a - b*b)a*a - b*b a*a + b*b >>>More
1. Simplification evaluation: 6x squared - (2x+1) (3x-2) + (x+3) (x-3), where x = one-half (to process). >>>More
1) 5a-2b+3b-4a-1 a= -1 b=2
2)7x²-3x²-2x-2x²=5=6x x= -2 >>>More
The root number simplification method is to split the number under the root number into a perfect square number and the product of a certain number, and then put the perfect square number outside the root number, but only if the number inside the root number is an integer, if it is a fraction, then the fraction is split into the square number of a fraction and the product of a certain number. >>>More
kn-2k-2n=0
Add 4 on both sides at the same time >>>More