Simplification evaluates tan70 cos10 root number 3sin10 tan70 2cos40

Updated on educate 2024-05-12
9 answers
  1. Anonymous users2024-02-10

    Gen No. (1+sin40°) - Gen No. (1-sin40°), Gen Shiji Town No. (1+cos50) - Gen No. (1-cos50), Gen Fengju No. (1+2cos 25-1) - Gen No. (1-2sin 25-1), Gen No. 2cos25 - Gen Sou Coarse No. 2sin25

    2sin(25-45)

    2sin20

  2. Anonymous users2024-02-09

    √(1-sinα)+1+sinα)

    (sin²(α2)+cos²(α2)-2sin(α/2)cos(α/2))

    (sin²(α2)+cos²(α2)+2sin(α/2)cos(α/2))

    (sin(α/2)-cos(α/2))²sin(α/2)+cos(α/2))²

    sin(α/2)-cos(α/2)|+sin(α/2)+cos(α/2)|

    When a (0, 2), cos( 2) sin( 2) 0

    Original formula = cos( 2) -sin ( 2) + cos ( 2) + sin ( 2) = 2 cos( 2).

    When [2, ), 0 cos( 2) sin( 2).

    Original formula = sin( 2)-cos( 2) + sin( 2) + cos( 2) = 2sin( 2).

  3. Anonymous users2024-02-08

    1-sin = [sin( 2)-cos( 2)] 1+sin = [sin( 2)+cos( 2)] root number(1-sin) + root number(1+sin)=|sin(α/2)-cos(α/2)|+sin(α/2)+cos(α/2)

    2sin (2), (2 times).

    Root number (1-sin) + root number (1+sin) = |sin(α/2)-cos(α/2)|+sin(α/2)+cos(α/2)

    2cos(2), (0< <2).

  4. Anonymous users2024-02-07

    Solution: original = root number ((sin( 2)-cos( 2)) 2) + root number ((sin( 2) + cos( 2)) 2).

    1) When 2< ", sin( 2)-cos( 2)>0, then.

    Original formula = sin(2)-cos(2)+sin(2)+cos(2).

    2sin(α/2)

    2) When 0< 2, sin(2)-cos(2)<0, then.

    Original formula = sin(2)-cos(2)+sin(2)+cos(2).

    2cos(α/2)

  5. Anonymous users2024-02-06

    The root number (1-sin) + root number (1+sin) is very cumbersome to write, and it may not be clear, mainly using two formulas: sina 2+cosa 2=1, sin2a=2sinacosa

    0 2 2, so sin(a 2)>0, cos(a 2)>0 can be brought in, and the root number can be crossed out.

  6. Anonymous users2024-02-05

    Think of sina as a double angle, and write 1 to get a perfectly flat way. Pay attention to positive and negative discussions.

  7. Anonymous users2024-02-04

    Solution: From the meaning of the question, it can be obtained: <2 , so 2< 2< so cos( 2)>0

    1+cosθ=2[cos(θ/2)]^2

    So [(1+cos) = 2cos(2)

  8. Anonymous users2024-02-03

    You may have missed a square. Once you add it, it's easy to simplify.

  9. Anonymous users2024-02-02

    Root number (1-2sin40° cos40°) cos40° - root number (1-sin50°) = root number ((sin40°-cos40°) 2 ) cos40° - root number ( (cos25°-sin25°) 2 ) = (sin40°-cos40°) cos40°- cos25°-sin25°) = tan40°- 1- root number 2 sin(45°-25°) = tan40°- 1- root number 2 sin20°

Related questions
4 answers2024-05-12

a-b)*(a-b) (a+b)*(a+b) 2(a*a-b*b) = --

a*a - b*b a*a - b*b a*a + b*b2(a*a + b*b) 2(a*a - b*b)a*a - b*b a*a + b*b >>>More

8 answers2024-05-12

1. Simplification evaluation: 6x squared - (2x+1) (3x-2) + (x+3) (x-3), where x = one-half (to process). >>>More

6 answers2024-05-12

1) 5a-2b+3b-4a-1 a= -1 b=2

2)7x²-3x²-2x-2x²=5=6x x= -2 >>>More

12 answers2024-05-12

The root number simplification method is to split the number under the root number into a perfect square number and the product of a certain number, and then put the perfect square number outside the root number, but only if the number inside the root number is an integer, if it is a fraction, then the fraction is split into the square number of a fraction and the product of a certain number. >>>More

13 answers2024-05-12

kn-2k-2n=0

Add 4 on both sides at the same time >>>More