Please use the ternary equation to solve the problem! O O thank you!!

Updated on educate 2024-05-23
20 answers
  1. Anonymous users2024-02-11

    Move the denominator to the addition and subtraction equations, and then add and subtract the same letter to subtract the same letter, and pull it in solving a binary system of equations (the detailed process is not convenient for mobile phone users).

  2. Anonymous users2024-02-10

    x=(y+z+200)*1/4 1

    y=(x+z+200)*2/7 2

    z=(x+y+200)*8/7 3

    1: Multiply 4, 4x=y+z+200, 4x-y-z=200 2: multiply 7y=2x+2z+400, -2x+7y-2z=400

    3: Multiply 7 on both sides 7z=8x+8y+1600, -8x-8y+7z=1600

    Multiply 7: 28x-7y-7z=1400

    :26x-9z=1800 ⑥

    Multiply 8: 32x-8y-8z=1600

    Minus: 40x-15z=0 to get x=3 8z substitution, z=substitution and finally get y=600

  3. Anonymous users2024-02-09

    Solution: x=(y+z+200)*1 4 .ay=(x+z+200)*2/7 ..b

    z=(x+y+200)*8/7 ..c

    a: multiply both sides by 4, 4x=y+z+200, 4x-y-z=200 b: multiply both sides by 7 7y=2x+2z+400,7y-2x-2z=400 c:

    Multiply 7 on both sides 7z=8x+8y+1600, 7z-8x-8y=1600

    Multiply 7: 28x-7y-7z=1400

    :26x-9z=1800 ⑥

    Multiply 8: 32x-8y-8z=1600

    Minus: 40x-15z=0 to get x=3 8z substitution, z=substitution and finally get y=600

  4. Anonymous users2024-02-08

    y+z-4x+200=0 (1)

    x+z-7/2y+200=0 (2)

    x+y-7 code wax mask code 8z+200=0 (3)1)-(2):9 2y-5x=0 (4).

    1)-(3):15/8z=5x=0

    Replace y and z with x to represent the expression (1).

    10/9x+8/3x-4x+200=0

    x=900y=9 and 10x=1000

    z=8/3x=2400

  5. Anonymous users2024-02-07

    4x=y+z+200 ①

    7y=2(x+z+200) ②

    7z=8(x+y+200) ③

    By y=4x-z-200 generation of Xun staring

    Finishing yields z=8x 3

    then y=4x 3-200

    Substituting Keshi Chang jujube to get x=1400

    Then y=500 3

    z=11200 3

  6. Anonymous users2024-02-06

    x+y+z=10 (1).

    x+1 2y+2z=7 (2).

    1 3x+1 2y+z=2 (3).

    2)-(3) Deaf.

    2/3x+z=5 (4)

    2) *2-(1) De.

    x+3z=4 (5)

    Get x=11 and substitute x=11 into (5) to get.

    z==-7/3

    Substituting the values of x,z into equation (1).

    y=4 3 The key to solving multivariate equations is to eliminate elements, in general, we use the addition and subtraction elimination method, and the key point in the use of this method is to make the absolute value of the coefficients of an unknown number equal.

  7. Anonymous users2024-02-05

    This is a ternary equation.

    First, subtract the two formulas to subtract one element to obtain two new binary one-dimensional equations, and then apply the substitution method to solve the one element, and substitute the previous formula to solve the other two elements is very simple, and it is easy to master the method.

  8. Anonymous users2024-02-04

    This is a system of ternary equations.

    It's simple to use the commutation method.

    1 2y-z=3

    *3 gives 1 2y+2z=-4 and we get z=-7 3 and then y=4 3

    x=11

  9. Anonymous users2024-02-03

    x+y+z=10 (1)

    x+1/2y+2z=7 (2)

    1/3x+1/2y+z=2 (3)

    1)-(2) 1 2y-z=3 (4)(3)*3-(2) y+z=-1 (5)(4)+(5) gives y=4 3

    Substituting y=4 3 into (5) gives z=-7 3 Substituting the values of y and z into (1) gives x=11

    i.e. x=11, y=4 3, z=-7 3

  10. Anonymous users2024-02-02

    x+y+z=10

    x+1/2y+2z=7

    1/3x+1/2y+z=2

    x+y+z=10 (1)

    2x+y+4z=14 (2)

    2x+3y+6z=12 (3)

    2z-y=-6 (4)

    y+4z=-8 (5)

    4) + (5) formula has.

    6z=-14 z=-7/3

    Z is substituted into (5).

    y=4 3x,y substituted by (1).

    x=9 so:

    x=9y=4/3

    z=-7/3

  11. Anonymous users2024-02-01

    I'll correct that.

    x+y+z=10 ……1) formula.

    x+1/2y+2z=7 ……2) formula.

    1/3x+1/2y+z=2 ……3) formula.

    1)-2) 1/2y-z=3 z=1/2y-31/3* 1)-3) -1/6y-2/3z=4/3-1/6y-2/3(1/2y-3)=4/3y=4/3, z=-7/3,x=11

  12. Anonymous users2024-01-31

    1. (1)+(2) gives 6x+3y+4z=24 (4)4)-(3) 2y=4

    y=2 substituting y=2 into (1) and (2) to obtain.

    2x+3z=11 (5)

    4x+z=7 (6)

    5)*2-(6) gives 5z=22-7

    z=3 substituting z=3 into (6) gives 4x+3=7x=1, so x=1, y=2, z=3

    2. Let burn (1)+(2)-(3) to get 4y+z=16z=16-4y (4).

    Substituting (4) into (3) gives 3x-18y=-48x-6y=-16

    x=6y-16 (5)

    Substituting (4) and (5) into (3) gives 30y-80-6y+112-28y=20

    y=3 substituting y=3 (Tanlu Xu5) to get x=6*3-16=2, substituting y=3 into (4) to get z=16-4*3=4, so x=2, y=3, z=4

    。Hope.

  13. Anonymous users2024-01-30

    It's not a god, but you can, I just became a full member today, and it's exactly 60 points.

  14. Anonymous users2024-01-29

    Solution: Substituting a*b=2 into a*b+c=2 obtains: 2+c=2 So the solution is Bi Zheng c=0

    a=-3-b can be seen from a+b=-3-b

    Substituting a=-3-b into a*b=2 obtains: (-3-b)*b=2, i.e., b 2 + 3b + 2 = 0

    The solution yields b = -1 or -2

    When b=-1, substituting a*b=2 gives a=-2

    When b=-2, the hand chakra is substituted for a*b=2 to get a=-1, so the solution of the equation is:

    a=-1 b=-2 c=0 or a=-2 b=-1 c=0

  15. Anonymous users2024-01-28

    2x+y+z=-1 3y-z=-1 3x+2y+3z=-5 From: z=3y+1

    Substituting , 2x+4y+1=-1

    That is, 2x+4y=-2 3x+11y+3=-5

    i.e. 3x+11y=-8 2- 3:

    10y=-10

    y=-1 substitution: z=-2

    Substituting :x=1

    The solution of the system of equations is:

    x=1,y=-1,z=-2

  16. Anonymous users2024-01-27

    The sum of the three formulas is 2a+2b+2c=308,,, then a+b+c=154 (4 formulas). Do you want me to talk about the rest of it?

    Subtract 123 formulas from 4 formulas.

  17. Anonymous users2024-01-26

    a+b=100 ①

    a+c=102②

    b+c=106③

    Solution: - get: b-c=-2

    Get: 2b = 104

    b = 52 Substitute b = 52 to obtain: 52 + c = 106

    Substitute c=54 for c=54 to obtain: a+54=102

    a=48

  18. Anonymous users2024-01-25

    Add the 3 equations together.

    a+b+c=(100+102+106) 2=102 2 3, so c=8 3

    b=2/3a=—10/3

  19. Anonymous users2024-01-24

    2x+3y-4z=24 ①

    x+2z=-4 z-x-2y=6 2 gives 4x+6y-8z=48

    3 yields 3z-3x-6y=18

    x-5z=66

    Get 7z = -70

    z=1 gives z=1 to get x+2=-4

    x=-6 substitutes x=-6 and z=-1 to get -6+2-2y=6y=-5

  20. Anonymous users2024-01-23

    2x+3y-4z=24 1

    x+2z=-4 2z-x-2y=6 3

    Formula 2 x2 gets: 2x+4z=-8 41+4 gets: 4x+3y=16 52+3 gets:

    3z-2y=10 63 x4 gets: 4z-4x-8y=24 77 + 1 gets: 2x+5y=-48

    i.e.: 4x+10y=-96 8

    Subtracting 5 from 8 yields: 4x+10y-4x-3y=-96-16 gets: 7y=-112 y=-16

    Substituting y=-16 into equation 5 yields: x=16

    Substituting x=16 into equation 2 yields: z=-10

Related questions
10 answers2024-05-23

Guo Dunyun: The original system of equations is.

y =x +1 (1)36+x =r (2)(r y) 2=5 y (3) is obtained by (1), x =y 1 (4), substituting (2) obtains, y +35=r (5), substituting (3) obtains, y y+35) 2=5 y, y(y y+35)=10,y3 >>>More

9 answers2024-05-23

The fourth one is very simple! Add the three equations and divide them by 2 to get: x+y+z=45 >>>More

16 answers2024-05-23

3a-b 3=2a+c 5 ==> a=b 3+c 52a+c 5=2b+c 7 Substituting the above formula a. >>>More

13 answers2024-05-23

It's not a human-taught version?