-
So: sin2008°
sin(5×360°+180°+28°)
sin(180°+28°)
sin28°
Since: tan28°=a
Then: (sin28° cos28°) = a i.e., sin 28°=a (1-sin 28°) yields: sin 28°=a (1+a).
Since: sin28°>0, tan28°=a>0, so: sin28°=a (1+a).
So: sin2008° = -a (1+a).
-
That 2008 = 11 * 180 + 28 = 360 * 5 + 180 + 28 so sin2008° = sin(360°*5+180°+28°) = -sin28°
tan28°=a, so sin28°=a 1+a 2 under the root number, so sin2008°=-a 1+a 2 under the root number
-
1/a+4/b+9/c
a+b+c)/a+4(a+b+c)/b+9(a+b+c)/c
1+b a+c a + 4+4a brother high b+4c b + 9 +9a c+9b c
14+ b/a+4a/b +c/a+9a/c +4c/b+9b/c
When talking about c:b:a=3:2:1, i.e., a=1 6, b=1 3, c=1 2.
The equal sign holds, 10, and substituting a+b+c = 1 into the numerator, gets.
a+b+c)/a + 4(a+b+c)/b + 9(a+b+c)/c =
1 + 4 + 9 + b/a + 4a/b) +c/a + 9a/c) +4c/b + 9b/c)
Let's consider the last three items, first look at b a + 4a b, let b a = t, t 2 - 4t + 4 = t-2) 2 > envy ruler = 0
t^2...0,
-
Anisotropy: Any two elements in a set are different objects.
by the nature of the set of =
a≠1, otherwise it does not meet the mutuality.
When ab=1, b=1 a, then 1 a=a2 gives a=1, and when it does not meet the mutuality a 2=1, a=-1, then b=ab=-b, and gives b=0 i.e. a=-1, b=0
-
a^2+1≥2√(a^2*1)=2a
The same goes for b 2+1 2b
c^2+1≥2c
So the original inequality holds.
Mean inequality: a+b2 ab).
-
Because A is a true subset of B.
For the empty set, it does not exist, and it is lost.
Not an empty set. then a 4 In summary, a 4
-
Because a is a true subset of b, a≠ba 4
-
It's good to think about the number line in your head, a>4
Let x2 > x1, and x1 and x2 both belong to [0, 2].
f(x2)-f(x1)=-2acos2x2+b+2acos2x1-b=2a(cos2x1-cos2x2) >>>More
12.According to tana = 1 3 0, so a is the first quadrant or third quadrant angle. >>>More
1. Solution: 2 a
1 (1-2) a, i.e., -1 a >>>More
1. Knowing a= , b= , a a, and a b, find aa a, and a b, and solve the simultaneous equations of y=2x-1, y=x+3 to obtain x=4, y=7a=(4,7). >>>More
f(x)=2^[sinx]+3^[cosx]
x=0 f(x)=4 4>0+a→a<4 >>>More