The number series An where a2 6 is known, and an 1 an 1 an 1 an 1 n , find the general formula for

Updated on educate 2024-04-09
10 answers
  1. Anonymous users2024-02-07

    Simplification is obtained first.

    n-1)an+1=(n+1)an-(n+1) Here it is easy to introduce a1=1 and then convert it.

    n-1)*(an+1- (n+1))=(n+1)*(an-n)Let bn=an-n

    bn+1/bn=(n+1)/(n-1)

    b2=4b3=b2*3/1

    b4=b3*4/2

    bn=bn-1*(n)/(n-2)=...=4*(3*4*5*..n)/(1*2*3*..n-2))=4*n*(n+1)/2=2n^2-2n

    So. an=2n^2-n(n>=2)

    Verify that n=1 satisfies the general formula when a1=1 satisfies the general term.

    So. an=2n^2-n

  2. Anonymous users2024-02-06

    Because an+1 + an - 1) (an+1 - an + 1) = n, so.

    an+1)+(an-1)=n(an+1)-n(an-1) i.e.

    n-1)(an+1)=(n+1)(an-1), so (an+1) (an-1)=(n+1) (n-1).

    So (an) (an-1) = n (n-1).

    an-1)/(an-2)=(n-1)/(n-2)

    an-2)/(an-3)=(n-2)/(n-3)

    a3/a2=3/2

    a2/a1=2/1

    an=(an)/(an-1)*(an-1)/(an-2)*(an-2)/(an-3)*.a3/a2)*(a2/a1)*a1

    n/(n-1)]*n-1)/(n-2)]*n-2)/(n-3)]*3/2)*(2/1)*a1

    n*a1 and a2=6, and a2 a1=2 1, so a1=3

    Finally, an=3n

  3. Anonymous users2024-02-05

    Refer to it. 1)an+1-an=2^n

    an-an-1=2 (n-1), a2-a1=2 1

    an+1=an+1-an+an-an-1+, a3-a2+a2-a1+a1

    2^n+2^(n^1+1

    2^(n+1)-1

    an=2 n-1

    2) From (Nendong 1): an=2 n-1

    bn = n(2 n-1) = n2 n-n

    sn=n2 n-n+(n-1)2 (n-1)-(including the first n *2 2-2+1*2 1-1

    n2^n+(n-1)2^(n*2^2+1*2^1-(n+(n+1)

    n2^n+(n-1)2^(n*2^2+1*2^1-n(n+1)/2

    Let b=n2 n+(n-1)2 (n * 2 2 + 1*2 1

    Then nb=n2 (n+1)+(n-1)2 n *2 3+1*2 2 (dislocation subtraction).

    nb-b=n2^(n+1)-2^n-2^(n^3-2^2-2^1

    n2^(n+1)-(2^(n+1)-2)

    n-1)2^(n+1)+2

    Sosn=(n-1)2 (n+1)-n(n+1)Aberdo 2+2 praise,

  4. Anonymous users2024-02-04

    an+1=an+6(an-1)=> sock tremor (an+1)-3an=-2an+6(an-1)=-2[an-3(an-1)]=order haoqin bn=an-3(an-1)then: potato defeat bn=-2(bn-1) b1=-10=>bn=(-2) (n-1)*(10)=-10*(-2) (n-1)=>an-3(an-1)=-10*(-2) (n-1)3(an-1)- 9(an-2)=[10*(-2) (n-1)]*3...3^..

  5. Anonymous users2024-02-03

    Split 2an + 3 5 n into 2 (an - 5 n) +2 5 n + 3 5 n = 2 (an-5 n) +5 (n+1) and then move 5 (n+1) to the left, so an+1 - 5 (n+1) =2 (an - 5 n) =2 2 (an-1 - 5 (n-1)) 2 n (a1 - 5 1) =2 n Look at the left and right of the most Tongdan, and get an+1 = 2....

  6. Anonymous users2024-02-02

    The numerator and denominator can be reversed.

    1/an = 2(an-1)+1]/a(n-1) =2+1/a(n-1)

    So the sequence 1 an is a series of equal differences with 2 as the first term and 2 as the tolerance.

    1/an = 2n

    So an = 1 2n

    If there's anything you don't understand, you can ask me.

  7. Anonymous users2024-02-01

    As can be seen from the title, all the items in the sequence are positive. Taking the reciprocal on both sides of the equation an+1=2an an+2 at the same time can be obtained as an equal difference series, so that the general term formula of the number series can be found first, and then the general term formula can be obtained.

    Provide your ideas, and please complete the specific process yourself.

  8. Anonymous users2024-01-31

    The general formula an=-1 n, please refer to the following process.

  9. Anonymous users2024-01-30

    by an=an-1

    2n gets an-an-1=2n

    Then when n faction Cong Kuan Zheng Fan 2.

    There is a2-a1=2x2

    a3-a2=2x4

    an-an-1=2n

    Add the above n-1 equations.

    an-a1=2(2+3+4+....)+n)

    an-a1=2[(n-1)(n+2) dust bright2]an-a1=n2+n-2

    So an=n2+n-1

    When n 1, a1=1+1-1=1 also fits the above equation.

    So the general formula.

    is an=n2+n-1

  10. Anonymous users2024-01-29

    Because a1=1,an=3 (n-1)·a(n-1)(n2,n n*) is obviously an 0

    Therefore, lnan=ln[3 (n-1)·a(n-1)]=ln3 (n-1)+lna(n-1)=lna(n-1)+(n-1)ln3

    So lnan-lna(n-1)=(n-1)ln3, so lna2-lna1=ln2

    lna3-lna2=2ln3

    lna4-lna3=3ln3

    lnan-lna(n-1)=(n-1)ln3 is superimposed to obtain lnan-lna1=[1+2+..n-1)]ln3=[n(n-1)/2]ln3

    So lnan=[n(n-1) 2]ln3+lna1=[n(n-1) 2]ln3+ln1=[n(n-1) 2]ln3=ln[3 [n(n-1) 2]].

    Therefore an=3 [n(n-1) 2].

Related questions
15 answers2024-04-09

Solution: Considering that each term of an is a proportional recursive relationship with the previous term, it can be multiplied to simplify the general term: >>>More

10 answers2024-04-09

b(n+1)=2b(n)+2

b(n+1)+2=2[b(n)+2] >>>More

9 answers2024-04-09

1) Using the counter-proof method, assuming that it is a proportional series, then a(n+1) an=c >>>More

11 answers2024-04-09

1) From sn=2-3an, a1=s1=2-3*a1, so a1=1 2 is also because an=sn-s(n-1)=2-3an-(2-3a(n-1))=3a(n-1)-3an >>>More