-
Simplification is obtained first.
n-1)an+1=(n+1)an-(n+1) Here it is easy to introduce a1=1 and then convert it.
n-1)*(an+1- (n+1))=(n+1)*(an-n)Let bn=an-n
bn+1/bn=(n+1)/(n-1)
b2=4b3=b2*3/1
b4=b3*4/2
bn=bn-1*(n)/(n-2)=...=4*(3*4*5*..n)/(1*2*3*..n-2))=4*n*(n+1)/2=2n^2-2n
So. an=2n^2-n(n>=2)
Verify that n=1 satisfies the general formula when a1=1 satisfies the general term.
So. an=2n^2-n
-
Because an+1 + an - 1) (an+1 - an + 1) = n, so.
an+1)+(an-1)=n(an+1)-n(an-1) i.e.
n-1)(an+1)=(n+1)(an-1), so (an+1) (an-1)=(n+1) (n-1).
So (an) (an-1) = n (n-1).
an-1)/(an-2)=(n-1)/(n-2)
an-2)/(an-3)=(n-2)/(n-3)
a3/a2=3/2
a2/a1=2/1
an=(an)/(an-1)*(an-1)/(an-2)*(an-2)/(an-3)*.a3/a2)*(a2/a1)*a1
n/(n-1)]*n-1)/(n-2)]*n-2)/(n-3)]*3/2)*(2/1)*a1
n*a1 and a2=6, and a2 a1=2 1, so a1=3
Finally, an=3n
-
Refer to it. 1)an+1-an=2^n
an-an-1=2 (n-1), a2-a1=2 1
an+1=an+1-an+an-an-1+, a3-a2+a2-a1+a1
2^n+2^(n^1+1
2^(n+1)-1
an=2 n-1
2) From (Nendong 1): an=2 n-1
bn = n(2 n-1) = n2 n-n
sn=n2 n-n+(n-1)2 (n-1)-(including the first n *2 2-2+1*2 1-1
n2^n+(n-1)2^(n*2^2+1*2^1-(n+(n+1)
n2^n+(n-1)2^(n*2^2+1*2^1-n(n+1)/2
Let b=n2 n+(n-1)2 (n * 2 2 + 1*2 1
Then nb=n2 (n+1)+(n-1)2 n *2 3+1*2 2 (dislocation subtraction).
nb-b=n2^(n+1)-2^n-2^(n^3-2^2-2^1
n2^(n+1)-(2^(n+1)-2)
n-1)2^(n+1)+2
Sosn=(n-1)2 (n+1)-n(n+1)Aberdo 2+2 praise,
-
an+1=an+6(an-1)=> sock tremor (an+1)-3an=-2an+6(an-1)=-2[an-3(an-1)]=order haoqin bn=an-3(an-1)then: potato defeat bn=-2(bn-1) b1=-10=>bn=(-2) (n-1)*(10)=-10*(-2) (n-1)=>an-3(an-1)=-10*(-2) (n-1)3(an-1)- 9(an-2)=[10*(-2) (n-1)]*3...3^..
-
Split 2an + 3 5 n into 2 (an - 5 n) +2 5 n + 3 5 n = 2 (an-5 n) +5 (n+1) and then move 5 (n+1) to the left, so an+1 - 5 (n+1) =2 (an - 5 n) =2 2 (an-1 - 5 (n-1)) 2 n (a1 - 5 1) =2 n Look at the left and right of the most Tongdan, and get an+1 = 2....
-
The numerator and denominator can be reversed.
1/an = 2(an-1)+1]/a(n-1) =2+1/a(n-1)
So the sequence 1 an is a series of equal differences with 2 as the first term and 2 as the tolerance.
1/an = 2n
So an = 1 2n
If there's anything you don't understand, you can ask me.
-
As can be seen from the title, all the items in the sequence are positive. Taking the reciprocal on both sides of the equation an+1=2an an+2 at the same time can be obtained as an equal difference series, so that the general term formula of the number series can be found first, and then the general term formula can be obtained.
Provide your ideas, and please complete the specific process yourself.
-
The general formula an=-1 n, please refer to the following process.
-
by an=an-1
2n gets an-an-1=2n
Then when n faction Cong Kuan Zheng Fan 2.
There is a2-a1=2x2
a3-a2=2x4
an-an-1=2n
Add the above n-1 equations.
an-a1=2(2+3+4+....)+n)
an-a1=2[(n-1)(n+2) dust bright2]an-a1=n2+n-2
So an=n2+n-1
When n 1, a1=1+1-1=1 also fits the above equation.
So the general formula.
is an=n2+n-1
-
Because a1=1,an=3 (n-1)·a(n-1)(n2,n n*) is obviously an 0
Therefore, lnan=ln[3 (n-1)·a(n-1)]=ln3 (n-1)+lna(n-1)=lna(n-1)+(n-1)ln3
So lnan-lna(n-1)=(n-1)ln3, so lna2-lna1=ln2
lna3-lna2=2ln3
lna4-lna3=3ln3
lnan-lna(n-1)=(n-1)ln3 is superimposed to obtain lnan-lna1=[1+2+..n-1)]ln3=[n(n-1)/2]ln3
So lnan=[n(n-1) 2]ln3+lna1=[n(n-1) 2]ln3+ln1=[n(n-1) 2]ln3=ln[3 [n(n-1) 2]].
Therefore an=3 [n(n-1) 2].
Solution: Considering that each term of an is a proportional recursive relationship with the previous term, it can be multiplied to simplify the general term: >>>More
b(n+1)=2b(n)+2
b(n+1)+2=2[b(n)+2] >>>More
1) Using the counter-proof method, assuming that it is a proportional series, then a(n+1) an=c >>>More
a2=a1=1
n>=3. >>>More
1) From sn=2-3an, a1=s1=2-3*a1, so a1=1 2 is also because an=sn-s(n-1)=2-3an-(2-3a(n-1))=3a(n-1)-3an >>>More