It is known that the number series bn antego and Sn 3 2n 2 1 2n number series an satisfy 100

Updated on delicacies 2024-05-07
13 answers
  1. Anonymous users2024-02-09

    b1=s1=3/2-1/2=1

    n>=2: Occasionally, there is bn=sn-s(n-1)=3 2n 2-n 2-3 2(n-1) 2+(n-1) 2=3 2(2n-1)-1 2=3n-2

    b1 = 3 * 1 - 2 = 1, also yes, so there is bn = 3n-2

    Then there is an 3=4 - (bn+2)=4 - (3n).

    i.e. an=4 (-n)=(1 4) n

    cn=anbn=(1/4)^n*(3n-2)

    tn=c1+c2+..cn=1/4*(1)+(1/4)^2*4+(1/4)^3*7...1/4)^n*(3n-2)

    1/4tn=(1/4)^2*1+(1/4)^3*4+(1/4)^4*7+..1/4)^(n+1)*(3n-2)

    tn-1/4tn=1/4+(1/4)^2*3+(1/4)^3*3+..1/4)^n*3-(1/4)^(n+1)*(3n-2)

    3/4tn=1/4+3[1/16*(1-(1/4)^(n-1))/(1-1/4)]-1/4)^(n+1)*(3n-2)

    1/4+1/4*(1-(1/4)^(n-1))-1/4)*(1/4)^n*(3n-2)

    1/2-(1/4)^n-3n/4*(1/4)^n+1/2*(1/4)^n

    1/2+1/4*(1/4)^n-3n/4*(1/4)^n

    Therefore, tn=2 3+1 3*(1 4) n-n*(1 4) n

  2. Anonymous users2024-02-08

    1) b1=s1=1

    bn=sn-s(n-1)=3n-2,n≥2

    So, bn=3n-2, n 1

    The logarithm of the equation an 3=4 -(bn+2) is obtained

    3log(an)=-(bn+2)log4

    3log(an)=-3nlog4

    log(an)=log4^(-n)

    So, an=4 (-n)=(1 4) n

    2) cn=an*bn=(1/4)^n*(3n-2)

    tn=c1+c2+..cn

    1/4+4(1/4)^2+7(1/4)^3+..3n-2)(1/4)^n

    1/4)tn =(1/4)^2+4(1/4)^3+..3n-5)(1/4)^n+(3n-2)(1/4)^(n+1)

    Subtract the two formulas to obtain:

    tn-(1/4)tn=1/4+3(1/4)^2+3(1/4)^3+..3(1/4)^n-(3n-2)(1/4)^(n+1)

    3/4)tn=1/4-(3n-2)(1/4)^(n+1)+3[(1/4)^2+(1/4)^3+..1/4)^n]

    3/4)tn=1/4-(3n-2)(1/4)^(n+1)+1/4-(1/4)^n

    3tn=1-(3n-2)(1/4)^n+1-(1/4)^(n-1)

    tn=2/3-(n-2)(1/4)^n

  3. Anonymous users2024-02-07

    bn=sn-sn-1=3n-2

    Your knowledge didn't write it, right, an 3=4 -(bn+2)?? Less things.

  4. Anonymous users2024-02-06

    When n 2, there is an=sn-sn-1=n2+5n-(n-1)2-5(n-1)brigade suspicion=2n 4

    And after the dismantling of the hand count Wang a1 s1

    an=2n+4

  5. Anonymous users2024-02-05

    sn+2n=2an

    s(n-1)+2(n-1)=2a(n-1).

    sn-s(n-1)+2n-2(n-1)=2an-2a(n-1)an+2=2an-2a(n-1)

    an=2a(n-1)+2

    Let an+c=2(a(n-1)+c).

    c=2an+2=2(a(n-1)+2)

    When n=1, s1=a1+2=2a1 a1=2a1+2=4

    A sequence is a proportional series.

    an+2=(a1+2)q^(n-1)=4*2^(n-1)=2^(n+1)

    an=2^(n+1)-2

    The second sub-question, ** is a part.

    1/4+1/2*(1-1/2^n)-(2n+2)/2^(n+1)=3/4-(2n+3)/(2^(n+1))=3/2-(2n+3)/2^n<3/2

  6. Anonymous users2024-02-04

    1. Calculating an is the key.

    sn=2an-2n sn-1=2an-2(n-1) to calculate an, it is very simple to calculate according to the requirements in the next step, and the ratio should be defined according to the definition.

    2. TN is expressed by bn, and it can be clearly seen that the proof result is a type of question type, and this type will be done, and the process is useless.

  7. Anonymous users2024-02-03

    (1) Certificate: sn=2an-2n. 1)

    s(n-1)=2a(n-1)-2(n-1) .2)

    1)-(2)=2an-2n-2a(n-1)+2n-2=2an-2a(n-1)-2=sn-s(n-1)

    and sn-s(n-1)=an

    So an=2an-2a(n-1)-2

    an=2a(n-1)+2

    From the above equation, we can get a(n-1)=(an-2) 2

    an+2)/(a(n-1)+2)=(an+2)/[(an-2)/2+2]

    Simplifying the right side of the above equation yields an+2) (a(n-1)+2)=2 (constant).

    It is proved that sn+2n=an

    Launched s1+2*1=2a1 s1=a1

    So a1=2

    is a proportional sequence by the formula an=a1*q (n-1).

    So an+2=(a1+2)*2 (n-1).

    So an=2 (n+1)-2

    2) Substituting the an in (1) into the bn.

    bn=n+1

    The number series is set to the number series.

    Substituting an, bn gets the formula cn=(n+1) (2 (n+1)) n>=1).

  8. Anonymous users2024-02-02

    Upstairs is too dedicated to not mix with drifting by.

  9. Anonymous users2024-02-01

    When n=1, s1=a1=1+3a1 2

    a1/2=-1

    a1=-2n 2.

    sn=n+3AN2 s(n-1)=(n-1)+3a(n-1).

    sn-s(n-1)=an=n+3an/2 -(n-1)-3a(n-1)/2

    an =3a(n-1) -2

    an -1=3a(n-1)-3=3[a(n-1)-1]

    an -1) [a(n-1)-1]=3, is a fixed value.

    a1-1=-2-1=-3

    The number series is a proportional series with -3 as the first sell and 3 as the common ratio.

    an -1=(-3)×3^(n-1)=-3ⁿ

    an=1-3ⁿ

    The general formula for the series is an=1-3

    Let the tolerance be db2=a2=1-9=-8 b20=a4=1-81=-80

    b20-b2=18d=-80-(-8)=-72

    d=-4b1=b2-d=-8-(-4)=-4

    bn=b1+(n-1)d=-4+(-4)(n-1)=-4n

    bn (an -1) = -4n old (-3 ) = 4n 3

    tn=b1+b2+..bn

    4(1/3+2/3²+3/3³+.n/3ⁿ)

    Let cn=1 3+2 3 +3 3 +n/3ⁿ

    Then cn 3 = 1 3 +2 3 +n-1)/3ⁿ+n/3^(n+1)

    cn-cn/3=(2/3)cn=1/3+1/3²+.1/3ⁿ -n/3^(n+1)

    1/3)(1-1/3ⁿ)/1-1/3) -n/3^(n+1)

    1/2)(1-1/3ⁿ) n/3^(n+1)

    cn=(3/2)(1/2)(1-1/3ⁿ) 3/2)[n/3^(n+1)]

    3/4)(1-1/3ⁿ) n/(2×3ⁿ)

    tn=4cn=3(1-1/3ⁿ) 2n/3ⁿ=3 -(2n+3)/3ⁿ

  10. Anonymous users2024-01-31

    sn=2n^2+n

    s(n-1)=2(n-1)^2+n-1

    2n^2-4n+2+n-1

    2n^2-3n+1

    sn-s(n-1)

    an=2n^2+n-2n^2+3n-1

    4n-1an=4log2 (bn)+3=4n-1

    4log2(bn)=4n-4

    log2(bn)=n-1

    bn=2^(n-1)

    an*bn=(4n-1)2^(n-1)=4n*2^(n-1)-2^(n-1)

    n2^(n-1+2)-2^(n-1)

    n2^(n+1)-2^(n-1)

    tn=1*2^2-2^0+2*2^3-2^1+..n2^(n+1)-2^(n-1)

    1*2^2+2*2^3+..n2^(n+1)-(2^0+2^1+..2^(n-1))

    2^0+2^1+..2 (n-1) is the first proportional sequence of k1=1 and q=2.

    2^0+2^1+..2^(n-1)

    1*(2^n-1)/(2-1)

    2 n-1 set.

    mn=1*2^2+2*2^3+..n2^(n+1)

    2mn=2*2^2+2*2^4+..n2^(n+2)

    Subtract the two formulas to obtain:

    2mn-mn=mn

    1*2^3+2*2^4+..n2^(n+2)-1*2^2-2*2^3-..n2^(n+1)

    2^2-2^3-..2^(n+1)+n2^(n+2)

    Number series -2 2-2 3 -..2 (n+1) is a proportional sequence with the first term = -4 and the common ratio q = 2.

    2^2-2^3-..2^(n+1)

    4(2^n-1)(2-1)

    4(2^n-1)

    So. mn=n2^(n+2)-4(2^n-1)

    n2^(n+2)-2^(n+2)+4

    n-1)2^(n+2)+4

    Resources. If the answer is helpful to you, I sincerely hope that you will praise it!!

    Wish: Learning progress!!

  11. Anonymous users2024-01-30

    sn=2n^2+2n

    When n=1.

    an=a1=s1=2+2=4

    When n 2 and n n *.

    an=sn-s(n-1)

    2n 2+2n-2(n-1) 2-2(n-1)=2n 2+2n-2(n 2-2n+1)-2n+2=2n 2+2n-2n 2+4n-2-2n+2=4n is combined to obtain: an=4n(n n*).

    tn=2-bn

    t(n-1)=2-b(n-1)

    The upper formula - the lower formula gets:

    bn=2-bn-2+b(n-1)

    bn=b(n-1)-bn

    2bn=b(n-1)

    bn/b(n-1)=1/2

    bn is a proportional series.

    t1=b1=2-b1

    b1=1bn=b1*q^(n-1)=1*(1/2)^(n-1)=(1/2)^(n-1)(n∈n*)

  12. Anonymous users2024-01-29

    an=sn-s(n-1)

    sn=3/2n^2+7/2n

    s(n-1)=3/2(n-1)^2+7/2(n-1)sn-s(n-1)=3/2n^2+7/2n-[3/2(n-1)^2+7/2(n-1)]

    3n-3/2+7/2

    3n+2bn=2^(3n+2)

    b(n-1)=2 (3n+2-3)=2 (3n+2)*1 8q=1 Yuheng8

    b1=2^5

    bn=32*(1/8)^(n-1)

    The first n terms are transported by false letter and side wheel ta = 32 * (1-1 8 n) (1-1 8) = 28 (1-1 8 n).

  13. Anonymous users2024-01-28

    Rotten Brigade 1) a1 = s1, an = sn-sn-1 that is, and finally judge whether the obtained an is satisfied with a1, if it is satisfied, it can be written as an uniformly, otherwise a1 is written separately.

    2) After the first question is solved, write directly the cryptomatto out of the stove to check the bn, which is very easy to judge.

Related questions
10 answers2024-05-07

b(n+1)=2b(n)+2

b(n+1)+2=2[b(n)+2] >>>More

14 answers2024-05-07

Because 2sn=(n+2)an-1 n is an arbitrary positive integer. >>>More

9 answers2024-05-07

1) Using the counter-proof method, assuming that it is a proportional series, then a(n+1) an=c >>>More

15 answers2024-05-07

Solution: Considering that each term of an is a proportional recursive relationship with the previous term, it can be multiplied to simplify the general term: >>>More