Known a b c 5 to find the value of a a b c b c a b c b c a detailed process

Updated on educate 2024-05-23
11 answers
  1. Anonymous users2024-02-11

    Simplification of a(a-b-c)+b(c-a+b)+c(b+c-a)a(a-b-c) to a a-(b+c) b(c-a+b) to -b a-(b+c) c(b+c-a) to -a(a-b-c) to -a(a-b-c) to -a(a-b-c) to -a(a-b-c) to a.

    a a-(b+c) -b a-(b+c) -c a-(b+c) a-b-c=-5.

    a-b-c)*(5)

    Then bring in (-5) * (5) to get 25

  2. Anonymous users2024-02-10

    You can first assign values to a and b to find c

    For example. Let a=2 and b=1 be substituted into the original formula, and c can be obtained

    Then substitute a, b, and c into the required algebraic formula.

  3. Anonymous users2024-02-09

    a+b) c=(a+c) b=(b+c) a=kLet the above equation be equal to k, get.

    a+b=kc

    a+c=kb

    b+c=ka

    The above three types of beam rent are added together.

    2(a+b+c)=k(a+b+c)

    k(a+b+c)-2(a+b+c)=0

    k-2)(a+b+c)=0

    The solution is: k=2 and a+b+c=0, when k=2, (a+b)(a+c)(b+c) abc=2*2*2=8;

    When a+b+c=0, the cavity spike can be obtained: a+b=-c, a+c=-b, b+c=-a, then.

    a+b)(a+c)(b+c)/abc=-c*(-b)*(a)/abc=-1.

  4. Anonymous users2024-02-08

    Because. It is known that the branch is a+b c=b+c a=a+c b, and the travel delay a+b+c≠0, so.

    a+b/c=b+c/a=a+c/b=(a+b+b+c+a+c)/(a+b+c)=2

    i.e. a+b=2c,b+c=2a,a+c=2ba+c)(a+b)(b+c) violently destroy abc2c 2a 2b abc

  5. Anonymous users2024-02-07

    Let a+b=2x (1).

    b+c=2y (2)

    c+a=2z (3)

    Then: a+b+c=x+y+z (4).

    1)-(2):a-c=2(x-y) (5)2)-(3):b-a=2(y-z) (6)3)-(1):c-b=2(z-x) (7)4)-(2):a=x+z-y (8)

    4)-(3):b=y+x-z (9)

    4)-(1):c=y+z-x (10)

    Then the line is in the volt: file carrying (a-b) (b-c) (c-a) (a+b) (b+c) (c+a).

    2(z-y)2(x-z)2(y-x)/2x2y2z(zxy-zxx-zzy+zzx-yxy+yxx+yzy-yzx)/xyz

    x Peihe y-z x+z y-y z+x z+y x=5 132 then: a (a+b)+b (b+c)+c (c+a)(x+z-y) x+(y+x-z) y+(y+z-x) z1+z x-y x+1+x y-z y+y z+1-x z

  6. Anonymous users2024-02-06

    Set the side (a+b-c) c=(a-b+c) b=(-a+b+c) a=k, then there is a mausoleum:

    a+b-c=kc

    a-b+c=kb

    a+b+c=ka

    The above three types of phase socks are added virtually, and you get:

    a+b+c=k(a+b+c)

    k(a+b+c)-(a+b+c)=0

    k-1)(a+b+c)=0

    Available: k=1, then there is.

    a+b-c=c, get: a+b=2c, a-b+c=b, get: c+a=2b, a+b+c=a, get: b+c=2a, so:

    a+b)(b+c)(c+a)/abc

    2c*2a*2b/abc

    8abc/abc

    a+b+c=0, there is.

    a+b=-c

    b+c=-a

    c+a=-b

    So. a+b)(b+c)(c+a)/abc-c*(-a)(-b)/abc

    abc/abc

    In summary, there are two values of (a+b)(b+c)(c+a) abc, which are: 8 and -1

  7. Anonymous users2024-02-05

    If a+b+c=0, then a+b=-c, a+c=-b, b+c=-a, original = (-c)(-a)(-b) abc=-1

    If a+b+c≠0, it is obtained from the proportional property: a b+c=b c+a=c a+b=(a+b+c) (2a+2b+2c)=1 2

    So a+b=2c, b+c=2a, a+c=2b, original = (2c)(2a)(2b) abc=8

    So the original value is -1 or 8

  8. Anonymous users2024-02-04

    Let a b+c=b c+a=c a+b=t

    then we get a=(b+c)t

    b=(a+c)t

    c=(b+a)t

    The addition of three formulas (a+b+c)=2(a+b+c)*t is divided into two cases:

    1) When a+b+c =0 and t is any real number, then a+b=-c, b+c=-a, c+a=-b(a+b)(b+c)(c+a) abc=(-c)*(a)*(b) (abc).

    -abc)/(abc)

    1(2) when a+b+c ≠ 0 (a+b+c)=2(a+b+c)*t both sides are divided by (a+b+c).

    t=1 2 then a b+c=b c+a=c a+b=1 2 dissolves to obtain b+c=2a, c+a=2b, a+b=2c(a+b)(b+c)(c+a) abc=(2c)*(2a)*(2b) (abc).

    8abc)/(abc)

    8'Sum up.

    a+b)(b+c)(c+a) abc has a value of -1 or 8

  9. Anonymous users2024-02-03

    Let b+c a=c+a b+a=c b+a=t, then b+c=at c+a=bt a+bt a+b=ct +=2(a+b+c)=(a+b+c)t(1) when a+b+c is not 0.

    t=2 b+c=2a c+a=2b a+b=2cc=2a·2b·2cABC=8

    2) When a+b+c=0.

    a+b=-c

    Original = -1

  10. Anonymous users2024-02-02

    Solution: Let (b+c) a=(c+a) b=(a+b) c=k b+c=ak,c+a=bk,a+b=ck 2(a+b+c)=k(a+b+c).

    If a+b+c≠0, then k=2

    If a+b+c=0, then a+b=-c k=(a+b) c=-c c=-1

    Primitive = abc (kc*ka*kb) = 1 k When k = 2, primitive = 1 8;When k = -1, the original formula = -1

  11. Anonymous users2024-02-01

    If a+b+c=0, then a+b=-c, a+c=-b, b+c=-a, original =abc (a+b)(b+c)(c+a)=-1

    If a+b+c≠0, it is obtained from the proportional property: a b+c=b c+a=c a+b=(a+b+c) (2a+2b+2c)=1 2

    So a+b=2c,b+c=2a,a+c=2b,original formula=abc (2a)(2b)(2c)=1 8

    So the original value is -1 or 1 8

    Hello, Shao Wenchao of the potato group will answer your questions and solve problems, if you don't understand anything about this question, you can ask, if you are satisfied, remember to adopt. It is not easy to answer the question, please understand, thank you. And good luck with your learning!

Related questions
10 answers2024-05-23

The original form can be reduced to:

1/(ab+c-1)+1/(bc+a-1)+1/(ca+b-1) >>>More

11 answers2024-05-23

a|+|b|=|c|,|a|-b=|c|,, so the absolute value of c is the largest, and a+b+c 0 so c is greater than zero. >>>More

11 answers2024-05-23

Let m = a+b, and it is clear that m is a positive real number, then the equation evolves into (m+c)(1 m+1 c)=(m+c) 2 (mc). >>>More

4 answers2024-05-23

If a, and b, c, and d are all positive, verify (b a+d c) (c b+a call search d) 4 >>>More

14 answers2024-05-23

b+c-a) a+(a+b-c) b+(a+b-c) c>3 should be (b+c-a) a+(a+c-b) b+(a+b-c) c>3 is proof: (b+c) a+(a+c) b+(a+b) c>6 proof: b+c) a+(a+b) b+(a+b) cb a+c a+a b+c b+a c+b c( b a+a b)+(c b+b c)+(a c+c a) because a, b,c are all unequal positive real numbers. >>>More