-
1) Vector oc=(cosa,sina), vector ab=(-3,3).
Vector oc Vector ab, cosa (-3)=sina 3
sina+cosa=0,∴√2*(√2/2*cosa+√2/2*sina)=0
i.e. 2*sin(a+ 4)=0, sin(a+ 4)=0
and a ( 2, 3 2), a + 4 (3 , 4, 7 4).
a+π/4=π,∴a=3π/4
2) Vector ac=(cosa-3,sina), vector bc=(cosa,sina-3).
Vector ac vector bc, vector ac*vector bc=0
cosa(cosa-3)+sina(sina-3)=0
That is, cos a-3cosa+sin a-3sina=0
That is, 1-3 (sina + cosa) = 0, sina + cosa = 1 3
sina + cosa) = 1 9, that is, sin a + 2 sinacosa + cos a = 1 9
1+sin2a=1/9,∴sin2a=-8/9
Original = [1+ 2*( 2 2*sin2a- 2 2*cos2a)] (1+tana).
1+sin2a-cos2a)/[1+(sina/cosa)]
2sin²a+2sinacosa)/[(sina+cosa)/cosa]
2sina(sina+cosa)]/[(sina+cosa)/cosa]
2sinacosasin2a look.
-
1)ac=(cosa-3,sina) bc=(cosa,sina-3)
Because |Vector ac|=|Vector bc
So (cosa-3) 2+sin 2a=cos 2a+(sina-3) 2
cos^2a-6cosa+9+sin^2a=cos^2a+sin^2a-6sina+9
Sorted out sina=cosa a=5 4
2) (2sin 2a+sin2a) (1+tana) finishing = [2sina(sina + cosa)] [(sina + cosa) cosa].
sin2a vector acVector bc=-1
cosa(cosa-3)+sina(sina-3)=-1cosa+sina=2/3
squared 1+sin2a=4 9
sin2a=-5/9
So the original = -5 9
-
First question:
From the coordinates of a, b, and c, we obtain: vector ac (cos 3, sin), vector bc (cos, sin 3), vector ac cos 3) 2 (sin ) 2 ,
Vector bc cos ) 2 (sin 3) 2 , according to the title, there are: vector ac vector bc , (cos 3) 2 (sin ) 2 (cos ) 2 (sin ) 2 (sin 3) 2, (cos ) 2 6cos 9 (sin ) 2 (cos ) 2 (sin ) 2 6sin 9, cos sin, again 90° 270°, 225°.
Second question:
Vector AC·vector BC 1, (cos 3)cos sin (sin 3) 1,(cos ) 2 3cos (sin ) 2 3sin 1,1 3(cos sin) 1, cos sin 2 3, (cos sin) 2 4 9,(cos ) 2 2cos sin (sin ) 2 4 9,1 sin2 4 9, sin2 5 9.
-
(1)ac=(cosa-3,sina) bc=(cosa,sina-3)
Because |Vector ac|=|Vector bc
So (cosa-3) 2+sin 2a=cos 2a+(sina-3) 2
cos^2a-6cosa+9+sin^2a=cos^2a+sin^2a-6sina+9
Sorted out sina=cosa a=5 4
2) (2sin^2a+sin2a)/(1+tana)
Finishing = [2sina(sina+cosa)] [(sina+cosa) cosa]
sin2a vector acVector bc=-1
cosa(cosa-3)+sina(sina-3)=-1
cosa+sina=2/3
squared 1+sin2a=4 9
sin2a=-5/9
So the original = -5 9
-
Solution: vector ac=(sin -3,cos), vector bc=(sin, cos -3).
Vector ac|=√sinα-3)^2+(cosα)^2]=√sinα)^2-6sinα+9+(cosα)^2]=√10-6sinα)
Vector bc=√sinα)^2+(cosα-3)^2]=√sinα)^2+(cosα)^2-6cosα+9]=√10-6cosα)
Vector ac|=|Vector bc
(10-6sinα)=10-6cosα)
-4= , then =5 4
2) Vector ac* vector bc
sinα-3)*sinα+cosα* cosα-3)
sinα)^2-3sinα+(cosα)^2-3cosα
1-3(sinα+cosα)
Vector ac*vector bc=-1
1-3(sin +cos) = 1, solution: sin +cos = 2 3
sinα+cosα)^2=(sinα)^2+2sinαcosα+(cosα)^2=1+2sinαcosα=4/9
2sinαcosα=-5/9.
2(sinα)^2+sin(2α)]1+tanα)
2(sinα)^2+2sinαcosα]/cosα/cosα+sinα/cosα)
2(sinα)^2+2sinαcosα]/sinα+cosα)/cosα]
cosα*[2(sinα)^2+2sinαcosα]/sinα+cosα)
2(sinα)^2*cosα+2sinα*(cosα)^2]/(sinα+cosα)
2sinαcosα(sinα+cosα)/sinα+cosα)
2sinαcosα
I don't know if it's right or not, if there is a mistake, please point it out, thank you!
-
I'm so sorry, I almost forgot about it.
-
Hello:(1) |Vector ac|=|Vector cb|
c is on the perpendicular line of ab, let the midpoint of ab d(3 2,3 2) dc vector ab vector = 0
cosα-3/2,sinα-3/2)(-3,3)=0∴sinα=cosα
2) Vector ac*vector bc=-1
cosα-3)cosα+(sinα-3)sinα=-1∴cosα+sinα=2/3
Landlord, is there any parentheses in your 2sin 2a+sin2a 1+tana?
-
Hello! Vector AC = (cosa-3,sina) vector BC = (cosa,sina-3) vector AC·vector BC
cos²a - cosa + sin²a - 3sina= 1 - 3(sina+cosa)
sina + cosa = 2/3
tan(a/2) +1/tan(a/2)= sin(a/2) / cos(a/2) +cos(a/2) / sin(a/2)
sin²(a/2) +cos²(a/2) ]/ [ sin(a/2) cos(a/2) ]
1 / ( 1/2 sina)
2 / sina
Original = (2sin A + sin2a) 2 sina= (2sin A + 2sinacosa) *2 sina = 4sina + 4cosa
-
1、|ac|=|bc|i.e. (cos -3) + sin cos sin -3), the solution gives sin =cos, i.e. =5 4
2. The absolute value of the vector will not be equal to -1, which is wrong.
-
1) Using the image method, c is the left semicircle of the unit circle, and the solution is =5 4
2) I really don't know what he's talking about.
-
Solution: The combination of numbers and shapes can be known.
c (cosa, sina) is a point on the unit circle.
By |ac|=|bc|Know.
Point c (cosa, sina) must be on the angular bisector of the first and third quadrants, cosa=sina
tana=1.Combined with a ( 2, 3 2) a = 5 4
-
(1) Actually, the title says that the modulus of the two vectors is equal, not the absolute vector ac=(cosa-3,sina).
Vector bc = (cosa, sina-3).
modulo of vector ac = root number (10-6cosa).
Modulo of vector bc = root number (10-6sina).
So cosa=sina
Because a belongs to (2, 3, 2).
a=5π/4
2) The question vector ac*bc=(cosa) 2-3cosa+(sina) 2-3sina=-1
cosa+sina=2/3
What does the title mean? The value of 2sin squared a+sin2a 1+tana.
-
Drawing to do,It's not very difficult.,And then,Add QQ guidance to do it.,It's not interesting to come.,Figure out the question type.,It's good in the future.,The most important thing is to draw.,Estimate the following first.。
Solution: Because the sum of any two sides of the triangle is greater than the third side, the difference between any two sides is less than the third side, so a 0 , b 0 , c 0 >>>More
Get married and go on a honeymoon Nowadays, young people today will choose two people to go on a honeymoon together after getting married, and most people will choose to go to other provincial cities when they are on their honeymoon. Because staying in the county for a long time is familiar with any place, when traveling to other provinces, you must make a travel strategy in advance. This will save you time on your trip, so you won't waste too much time during your trip and go to very few places to visit.
Cao Cao had twenty-five sons: Cao Ang, whose name is Zi Xuan. Cao Pi, the word Zihuan. >>>More
Early, mid, and late stages.
In the early stage, planning and planning is to determine whether the work is suitable for animation, cost and expected profit, so as to determine the cost and time of production. >>>More
There are six classifications: Tropical Depression, Tropical Storm, Severe Tropical Storm, Typhoon, Severe Typhoon, and Super Typhoon. Typhoons are a category of tropical cyclones. >>>More