A 0, B 0, determine the size of B2 A and 2B A

Updated on healthy 2024-08-09
13 answers
  1. Anonymous users2024-02-15

    To determine the size of these two numbers, just subtract the last one from the previous one.

    b2 a-(2b-a)=b2 a-2b+a (b2-2ab+a2) a = (b-a)2 a because a 0 (b-a) 0 so b2 a 2b-a if and only if a=b go to the equal sign hope.

  2. Anonymous users2024-02-14

    Solution: because: b 0 5 a-(2b-a)=(b 0 5-2ab+a 0 5) a=(b-a) 0 5 a

    And because, a 0 , b 0

    So: (b-a) 0 5 a 0

    i.e., (b 0 5 a) (2b-a).

  3. Anonymous users2024-02-13

    b^2/a-(2b-a)=b^2/a-(2ab-a^2)/a=(b^2-2ab+a^2)=(b-a)^2/a

    Because a>0, b>0, (1) when a is not equal to b, (b-a) 2 a> 0, so b 2 a > 2b-a

    2) When a is equal to b, (b-a) 2 a=0, so b 2 a = 2b-a

  4. Anonymous users2024-02-12

    Take the logarithm of the comparison value of the lead: a a*b b=a a+b b (ab) [a+b) 2]=(a+b) 2( a+ b) subtract the two logarithms and compare (a a+b b)-=a-b) 2 a-(a-b) 2 b=(a-b) 2 * a b If a>b, a-b>0 a b>1 know a b>0 Formula >> 0....

  5. Anonymous users2024-02-11

    Because A 2 Rock Chaos B B 2 A> = 2 root number (ab), A B > = 2 root number (ab), and A is not equal to B, so the coarse file A 2 staring B B 2 A > A B

  6. Anonymous users2024-02-10

    [Method 1] (a 2 b+b 2 a)-(a+b)=[(b-a) 2*(b+a)] (ab)>0

    So a b + b a > a + b.

    Method 2] a>0, b>0, a≠b, (a 2 b+b) > 2 under the root number (a 2 b*b) = 2a, b 2 a+a) > 2 under the root number (b 2 a*a) = 2b, the two formulas are added: a 2 b + b 2 a + a> 2a + 2b, so a b + b a > a + b.

  7. Anonymous users2024-02-09

    Solution: From the problem and the basic inequality, it can be known:

    a²/b)+b>2a.

    b²/a)+a>2b.(a≠b), these two inequalities cannot be equated. )

    a²/b)+(b²/a)>a+b

  8. Anonymous users2024-02-08

    A 2 B+B 2 A-(A+B)=(A+B)(A-B) 2 Ab Because "0,B>0, and A≠B, So) (A+B)(A-B) 2 Ab>0So, A 2 B+B 2 A-(A+B)>0, So, A 2 B+B 2 A>A+B

  9. Anonymous users2024-02-07

    (a^2/b+b^2/a)-(a+b)

    a³+b³-a²b-ab²)/ab

    a²(a-b)+b²(b-a)]/ab=(a-b)(a²-b²)/ab

    a-b)(a-b)(a+b)/ab

    a-b)²(a+b)/ab

    In the above equation, all 3 terms are greater than 0, so (a2 b+b 2 a) (a+b).

  10. Anonymous users2024-02-06

    by a 0, b 0, |a|<|b|

    It can be seen that A is positive, B is negative, and A is closer to the origin.

    a+b<0,b-a<0,a+b|=-a-b,b-a|=a-b,(-a-b)-(a-b)

    a-b-a+b

    2a 0, i.e. |a+b|<|b-a|。

  11. Anonymous users2024-02-05

    Two methods:

    1) Do the bad method:

    ab²-a²b=ab(b-a)

    A 0, b 0, ab 0, then.

    b a, b-a 0, ab -a b 0, ab a b b=a, b-a=0, ab -a b=0, ab = a b b a, b-a 0, ab -a b 0, ab a b (2) do business law.

    ab²/a²b=b/a

    b>a,b/a>1,ab²>a²b

    a<b,b/a<1,ab²<a²b

    a=b,b/a=1,ab²=a²b

    Categorical discussion is sufficient.

  12. Anonymous users2024-02-04

    a²b-ab²=ab(a-b)

    a>0, b>0 are known

    When a>b ab(a-b)>0 i.e. a b>ab when a=b, a b=ab

    When a< b a b

  13. Anonymous users2024-02-03

    ∵a>b>0

    a²>ab>0

    i.e.: a -ab 0 and ab 0

    a² +1/ab + 1/a(a-b)

    a +1 ab + 1 (a -ab) -ab+ab=[(a -ab)+1 (a -ab)] ab+1 (ab)] 2+2 [basic inequality].

    4 If and only if a -ab = 1, ab = 1 take the equal sign, that is: when a = 2, b = 1 2, the original formula has a minimum value of 4

Related questions
17 answers2024-08-09

Since the root number 3 is the proportional middle term of 3 a and 3 b, (3) = 3 a*3 b, so 3 (a+b) = 3 >>>More

5 answers2024-08-09

0x ??? appearsThe 0x ??? referenced by the directiveMemory. The memory cannot be"read"or"written"。 >>>More

6 answers2024-08-09

The problem is very weird, first said a, b, c, d are all greater than 0, but then there is -1 4 should mean that they are all real numbers. >>>More

1 answers2024-08-09

If you use a pirated system, there may be such a problem, it is recommended to use [Genuine]. >>>More

10 answers2024-08-09

Definition of C2C: C2C is actually a technical term for e-commerce, which is e-commerce between individuals. >>>More