An is a proportional series, a4a7 521, a3 a8 124, and the common ratio q is an integer, then a10

Updated on educate 2024-08-15
8 answers
  1. Anonymous users2024-02-16

    It should be 512. If 521 is not calculated, the integer q makes the first term a1 and the common ratio is q, then a4=a1*q 3 a7=a1*q 6 a3=a1*q 2 a8=a1*q 7 substituting the above formula a1 2*q 9=-512 a1*(q 2+q 7)=124 appropriate change, then the above equation becomes a3 2*q 5=-512 a3*(1+q 5)=124 a3*(1+2*q 5+q 10)=15376, then q 5=-521 (a3 2) substitution has a3 2-124* a3-512=0 Solve the binary equation to obtain a3=62 66a3=-4, q=-2 or a3=128, q=-1 2. So a3=-4 and q=-2 fit the topic: a10=a1*q 9=a3*q 7=512

  2. Anonymous users2024-02-15

    I've done this question, the landlord wrote it wrong, it should be a4a7=-512 Note that 521 is a prime number, there is no such integer q, (o) a4*a7=a3*q*a8 q=a3*a8=-512 (1).

    a3+a8=124 (2)

    So a3 = -512 a8 is substituted into (2) to get -512 a8 + a8 = 124a8) 2-124 (a8) - 512 = 0

    a8-128)(a8+4)=0

    a8 = 128 or a8 = -4

    then a3 = -4 or a3 = 128

    a8/a3=q^5=-32,q=-2

    or a8 a3=-4 128=-1 32 (because q is an integer, so it is rounded) so q=-2, a8=128

    a10=a8*q^2=128*4=512

  3. Anonymous users2024-02-14

    an} is a proportional series of stool ants, so there is:

    a4^2=a3*a5=18

    a4^2=18

    a6^2=a4*a8=72

    a6^2=72

    q 2 = root coarse number (a6 2 a4 2).

    Root number macro buried (4) = 2

    So. q=+/2

  4. Anonymous users2024-02-13

    a[2]a[9]=a[3]a[8]=-512 a[3]+a[8]=124 a[3]=-4 a[8]=128 or a[3]=128 a[8]=-4

    And because the common ratio is an integer, it can only be a[3]=-4 a[8]=128, and the common ratio q=-2

    a[12]=128*(-2)^4=2048

  5. Anonymous users2024-02-12

    a1a9=256a5 2=a1a9=256a5=16 or a5=-16a4+a6=40a5 Round regret dismantling q+a5*q=40a5*(q+1 good q)=401)a5=16q+1 q=5 22q 2+2-5q=0(q-2)(2q-1)=0q1=2 q2=1 22)a5=-16q+1 orange jujube q=-5 22q 2+2+5q=0(q+2)(2q+1)=0q1=-2 q2=- 1 2

  6. Anonymous users2024-02-11

    a1+a5+a9=8

    a1+a1q^4+a1q^8=8………

    Song Wangban a4 + a8 + a12 = -27

    a1q^3+a1q^7+a1q^11=q^3(a1+a1q^4+a1q^8)=-27…Confessional .........

    Get: q 3=-27 Yehu 8

    q^3=(-3/2)^3

    q=-3/2

  7. Anonymous users2024-02-10

    a4*a7=-512

    So a2*19=-512

    a9=a2*q^7

    Therefore, a2*a2*q 7=-512, and guess the equation system of a2+a2*q 7=254 to get (1) a2=256, q=-1 2, but the common ratio of the spike or the integer is an integer with a cluster, so this solution is rounded.

    2) a2=-2, q=-2, so a12=-2048

  8. Anonymous users2024-02-09

    a4*a7=a2*q 2*a9 q 2=a2*a9 before solving the equation system: nanofiber a2*a9=-512, a2+a9=254 obtains: a2=256, a9=-2 or a2=-2, a9=256 is an integer, rounding off a2=256, a9=-2

    Clear: a9, a2=q, 7=-128

    q=-2a12=a9*q^3=2048

Related questions
10 answers2024-08-15

From the second item.

an+1 an=q (same constant). >>>More

13 answers2024-08-15

1) The general formula for proportional series is: an=a1 q (n 1). >>>More

19 answers2024-08-15

1.Knowing that x, 2x+2, 3x+3 is a proportional sequence, the first three terms are what is the fourth term? >>>More

9 answers2024-08-15

1) In the case of proportional series, a2*a6=a4 squared. Then the cube of a4 is equal to 1 8, then a4 is equal to 1 2. Gotta : >>>More

11 answers2024-08-15

According to an-1 is a proportional series, it can be obtained. >>>More