6th Grade Olympiad Concentration Problem!! Urgent!! Help!!

Updated on educate 2024-02-25
8 answers
  1. Anonymous users2024-02-06

    The key to solving the problem is that the salt content of the brine remains the same.

    Start with 120 70% = 84 (kg) ......After adding water to the original brine, the brine remains unchanged.

    The concentration after dividing by saline, that is, the corresponding number divided by the corresponding amount 84 60% = 140 ......Find the weight of the brine after adding water, and then subtract the weight of the original brine from the weight of the later brine, and the extra is the weight of the added water: 140-120=20 (kg).

  2. Anonymous users2024-02-05

    If x kg of water is added, there is:

    70%*120=(120+x)*60%

    The weight of the alcohol before and after adding water is the same.

  3. Anonymous users2024-02-04

    Set the mass of the water to be x kilograms.

    120*70%=(120+x)*60%

    84-72=60%x

    60%x=12

    x=20

  4. Anonymous users2024-02-03

    Set the first pour of alcohol from the nail x liters, the remaining alcohol in the nail 20 x

    Pour 6 liters back from B to A, which is equivalent to pouring 6 20 30 of the alcohol in B back into A, the alcohol in A (20 x), and the remaining alcohol in B.

    Both are equal. 20 x 20 liters.

  5. Anonymous users2024-02-02

    Set the first pour of alcohol from a x liter.

    20-x+6x/20=x-6x/20

    7/5x=20

    x=100/7

  6. Anonymous users2024-02-01

    Solution: Let the mass of a certain concentration of alcohol in the original container be m, containing n cups of alcohol, the mass of a glass of water is m, and the mass of a cup of pure alcohol is the relative density of pure alcohol, then:

    The simultaneous equation can be obtained: n = 1, m = so the original concentration = since there is 1 cup of alcohol in the original container, the concentration is.

  7. Anonymous users2024-01-31

    Add another glass of pure alcohol, the pure alcohol content in the container is 40%, which is equivalent to mixing 1-40% = 60% of a glass of pure alcohol with 25% alcohol, the number of cups with 25% alcohol: 1 (1-40%) 40%-25%) = 4 glasses.

    When a glass of water is added, the pure alcohol content in the container is 25%, so the original alcohol of a certain concentration is 4-1 = 3 cups.

    Add a glass of water, the total amount of alcohol remains the same, and the original solution contains alcohol 4 25% = 11 3 = 1 3

  8. Anonymous users2024-01-30

    25%:75%=1:3

    It turned out that there was 1 cup of alcohol in the container with a concentration of 1:(1+2) 33%.

Related questions
18 answers2024-02-25

Fill an average of 5 boxes, and finally have an extra one, indicating that the single digit is 1 or 6 If you should use 6 boxes, and finally there are four more, it means that the single digit is an even number, so the single digit is 6 hundred digits, the single digit is 6, and the single digit is 6, and it is between 150-200. >>>More

8 answers2024-02-25

1. The picture is not well drawn, the blank part of the midpoint, the three intersection points are the center of three circles, and it is not difficult to see that a small shadow can be calculated according to an equilateral triangle with a side length of 5 cm corresponding to the fan, that is to say, the area of the shadow part can actually be seen as three equilateral fans with a side length of 5 cm. >>>More

8 answers2024-02-25

26 kg = (13) tons of (500).

Words according to the meaning of the word: >>>More

26 answers2024-02-25

1. Set the product ** to x

x=4800 >>>More

10 answers2024-02-25

40% of the whole journey was walked on the first day, the remaining 30% was walked on the second day, and 60% * 30% = 18% was walked on the second day >>>More