-
0< 0, sin >0, sin >0coss >0 ,cos >0, cos >0sin( + sin( +sin sin must be proved. sin(θ+sinβ>sin(θ+sinαsinθcosα+sinαcosθ)sinβ>(sinθcosβ+sinβcosθ)sinα
sinθsinβcosα+sinαsinβcosθ>sinαsinθcosβ+sinαsinβ*cosθ
Subtract sin sin cos on both sides
Get sin sin cos > sin sin cos both sides divided by sin
sinβcosα>sinαcosβ
sinβcosα-sinαcosβ>0
sin(β-0
sin( -0 certificate ended.
-
sin(θ+=sinθcosα+sinαcosθ
sin(θ+=sinθcosβ+cosθsinβ
So, to prove.
sin(θ+/sin(θ+=(sinθcosα+sinαcosθ)/(sinθcosβ+cosθsinβ)>sinα/sinβ
must be proved:
sinθcosα+sinαcosθ)*sinβ>(sinθcosβ+cosθsinβ)*sinα
That is, to prove: sin cos sin +sin cos sin > sin cos sin +cos sin sin
Both sides make an appointment with sin cos sin at the same time
So, that is, to prove.
sinθcosαsinβ>sinθcosβsinα
sinθcosαsinβ-sinθcosβsinα>0
sinθ(cosαsinβ-cosβsinα)>0
sinθsin(β-0
And because. f(x)=sinx increases monotonically on (0, 2), and 0< so sin >0 and sin( -0 is proved.
-
1 Because it is an odd function, f(0)=0, b=0
Substituting f(1)=1 2, we get 1 (1+a)=1 2, a=12 f(x)=x (x 2+1).
f(x)'=[(x^2+1)-2x^2]/(x^2+1)^2=(1-x^2)/(x^2+1)^2
Req f(x).'>0 gives x to belong to (-1,1);
f(x) is an increasing function over the interval (-1,1).
3 g(0)=3^0-0=1
g(1)=1/3-1/2=-1/6<0
Whereas g(x) is continuous, so there is a zero point on (0,1).
So the function g(x) has a zero point on (-.
-
3sinx-4cosx-k =0
Using the auxiliary angle formula, tidy up.
5sin(x+s) =k,s =arctan(-4/3)
sin(x+s) =k/5
sin(x+s) makes sense.
1≤k/5≤1
Solution, -5 k 5
-
Divide both sides of the equation by 5 to get 3 5*sinx-4 5*cosx=k 5;
Order: cosy=3 5, then: siny=4 5, have: sin(x-y)=k 5
It is obtained from -1<=sin(x-y)<=1, -1<=(k 5)<=1, -5<=k<=5
-
1.Solution: When x [0,2], the function obtains the maximum value when x = 2, that is, the original function increases monotonically on x [0,2].
The axis of symmetry of the original function is (2-2a) a
When a 0.
2-2a)/a≤0
a 1 when a 0.
2-2a) a 2, get a 1 2
a Empty set. In summary, a 1
2.Solution: f(x) is the odd function, -f(-1)=f(1)>1
i.e. f(-1)<-1
and the period t=3 of f(x).
f(-1)=f(-1+3)=f(2)<-1, i.e. (2a-3) (a+1)<-1
Add 1 to both sides of the unequal sign
Simplification, obtainable:
3a-2)/(a+1)<0
13.Solution: Let x=y=3
Then f(xy)=f(9)=f(3)+f(3)=2 The original inequality can be reduced to f(x)+f(x-8) f(9) The original function is an increasing function.
The original inequality can be reduced to x+x-8 9
Solution: x 17 2
4.Solution: Let f(x)=ax +bx+c
f(x+1)+f(x-1)=2x²-4x∴a(x+1)²+b(x+1)+c+a(x-1)²+b(x-1)+c=2x²-4x
2a=2,4a+2b=-4,2a+2c=0 is solved: a=1, b=-4, c=-1
f(x)=x²-4x-1
-
is an odd function defined on r with a period of 3.
f(2)=f(2-3)=f(-1)=-f(1)=(2a+3)/(a+1),f(1)>1 -f(1)<-1
2a+3)/(a+1)<-1
4 30, f(x) is an increment x 2-8x<9 x 2-8x> 0-18 on the defined domain (0,+, 89 x 2-8x<0x<-1 or x>9 0< x<8x=0 f(x)+f(x-8)=f(8)4Let f(x)=ax 2+bx+c
f(x+1)=a(x+1)^2+b(x+1)+cf(x-1)=a(x-1)^2+b(x-1)+cf(x+1)+f(x-1)=2ax^2+2bx+2c+2a2a=2 a=1
2b=-4 b=-2
2c+2a=0
c=-1f(x)=x^2-2x-1
-
Let's talk about the idea: Establish the function f(x)=1 Sidka 5*(100-x)+2 (root number x).
Replacing it with the root number x with t = is a quadratic function hole early, and I have learned Nalufinch in junior high school. Find f(x)max=
I don't understand hi me.
-
1) Find the swing angle (radian) of the initial position
At the initial moment, t=0, bring in f(t), and get the swing angle of the initial position f(0)=1 2;
2) Find the frequency of the pendulum.
Frequency =2 2= ;
3) Find how long a single pendulum completes 5 complete swings (one reciprocating swing is called a complete swing) period t = 1, 5 complete swing time t'=5t=5/π。
I don't understand the first question.
The second idea is: >>>More
Cost (3a+2b).
Revenue (a+b) 2 *5=5(a+b) 2 reams (3a+2b)>5(a+b) 2 >>>More
Let x2 > x1, and x1 and x2 both belong to [0, 2].
f(x2)-f(x1)=-2acos2x2+b+2acos2x1-b=2a(cos2x1-cos2x2) >>>More
So the money to buy cookies should be between 0-40 and it must be in multiples. >>>More
Because the addition of PA+PB>AB, PB+PC>BC, PA+PC>AC yields: 2 (PA+PB+PC)>AB+BC+AC=3, i.e., PA+PB+PC>3 2 >>>More