sinQcosQ is the square of x, 2xsina sinB, two roots of 0, and 2cos2a cos2B

Updated on science 2024-04-05
13 answers
  1. Anonymous users2024-02-07

    It feels like there is a mistake in your problem, and the equation should be x 2-2xsina + sinb 2 = 0

    quadratic equation ax 2 + bx + c = 0 followed by x1, x2; It has the following properties: x1+x2=-b a, x1*x2=c a

    In this problem, sinqcosq is the square of x, 2xsina, sinb 2, and the two roots of 0.

    So sinq+cosq=-2sina, sinq*cosq=sinb 2

    Because sinq 2 + cosq 2 = 1

    So sinq 2+cosq 2=(sinq+casq) 2-2*sinq*cosq=1

    i.e. (-2sina) 2-2*sinb 2=1

    4*sina^2-sinb^2=1

    And because cos2a=cosa 2-sina 2=1-2sina 2 2sina 2=1-cos2a

    So 2-2cos2a-2sinb 2=1

    This question is proven.

  2. Anonymous users2024-02-06

    There is no mistake in the question.

  3. Anonymous users2024-02-05

    First tell a formula:

    sin2q=2tanq (1+tan square q)=cos2q=(1-tan square q) (1+tan square q)=so sin square q + sinqcosq-2cos square q=-(cos square q-sin square q) + square q=-cos2q + square q-1)+

    cos2q+==

    Step by step, take a closer look......It is ...... general method

    It is also possible to use tanq=2 to find sinq and cosq for direct generation.

  4. Anonymous users2024-02-04

    sin square q + sinqcosq-2cos square q = (sin square q + sinqcosq-2cos square q) (sin square q + cos square q).

    tan square q + tan q-2) (tan square q + 1), [the numerator and denominator are divided by cos square q).

  5. Anonymous users2024-02-03

    4/5。Directly raise the cos squared out. After the proposal is the square multiplication of cos (tan squared plus two times tan minus two). Find out that the square of cos is 1 5. Just substitute it.

  6. Anonymous users2024-02-02

    Because the two roots are equal, so.

    36sin^2q-4tanq=0

    9sin^2q-sinq/cosq=0

    9sinq-1/cosq=0

    9sinqcosq=1

    There is sin 2q+cos 2q=1

    sinq+cosq)^2=1+2sinqcosq=1+2/9=11/9

    Because of 0, sinq+cosq=( 11) 3

  7. Anonymous users2024-02-01

    x squared - 6xsinq + tanq = 0 (09sin q = sinq cosq

    sinqcosq=1/9

    sinq+cosq=root(sinq+cosq) = root(1+2sinqcosq).

    Root number (1+2 9).

  8. Anonymous users2024-01-31

    Two are equal i.e.

    x²-6xsinq+tanq=0

    x-3sinq)²=0=x²-6xsinq+9sin²q=x²-6xsinq+tanq

    9sin²q=tanq

    9sinq=1/cosq

    9sinqcosq=1

    sinqcosq=1/9

    sinq+cosq)²=1+2sinqcosq=1+2/9=11/9

    sinq+cosq= 11 3 under the root number

    Since 00 cosq>0

    So sinq + cosq = 11 3 under the root number

  9. Anonymous users2024-01-30

    f(a)=1, 2 root number 3sinacosa+(cosa) 2-(sina) 2=1

    2 roots: 3sinacosa+(cosa) 2-(sina) 2 roots: 3sin(2a)+cos(2a).

    2sin(2a+π/6)

    2sin(2a+ 6)=1, 2a+ 6=5 6a= 3 Counting this, I found that there is a problem with the question Zheng Tuanmu, if the envy is changed to f(c)=1, it is very reasonable.

  10. Anonymous users2024-01-29

    (5x-4)(5x+3)=0 So x=4 5,x= -3 5 in(0,vulture),sin,cos is the root of the equation sin =4 5,cos 3 5 sin 2 -cos 2 =16 25-9 25=7 25 sin 3 -cos 3 =64 125+27 125=91 125 tan -cot =-4 3-3 4=-25 12

  11. Anonymous users2024-01-28

    sinq*cosq

    1/2[(sinq+cosq)^2-1]=1/2(1/4-1)=sinq-cosq)^2=

    sinq+cosq)^2-4sinq*cosq1/4-4x(-3/8)=7/4

    Because qe(0, root number 2), so when q is less than half of the pie, sinq small crack rent rushes to cosq, and q is greater than cosq when q is greater than half of pie

    Hence sinq-cosq

    7 2 or type.

  12. Anonymous users2024-01-27

    1、a=

    then a + b = 1

    a+b=(√3+1)/2

    ab=m, then (a+b) -2ab=1

    4+2√3)/4-2m=1

    m=√3/4

    2. Original formula = sinq (1-cosq sinq) + cosq (1-sinq cosq).

    sin²q/(sinq-cosq)+cos²q/(cosq-sinq)

    sin²q-cos²q)/(sinq-cosq)=sinq+cosq

    x²-(3+1)x+√3/2=0

    So x=[( 3+1) (3-1)] 4x1=1 2, x2= 3 2

    So q = 6 or 3

  13. Anonymous users2024-01-26

    For convenience, we use x=sinq, y=cosq(1)(sinq) 2+(cosq) 2=1, so x 2+y 2=1

    x-y=1/5

    So according to (x-y) 2=x 2-2xy+y 2(1 5) 2=1-2xy

    xy=12/25

    Therefore, sinq·cosq=12 25

    2) When 0y, y=4 5 and y=-3 5y=3 5 or -4 5 are discarded

    So x=4 5 or 3 5

    And 3 5-(-4 5) is not equal to 1 5, so y=-4 5 is rounded, so y can only make 3 5

    So tanq=sinq, cosq=x, y=(4 5), (3 5)=4, 3

Related questions
15 answers2024-04-05

Elementary 1 math problem: If the square of 2x - 5x + 3 = 0, the square of 2x - 5x = -3 algebraic equation (15x squared - 18x + 9) - (3x squared + 19x - 36) - 8x value. >>>More

17 answers2024-04-05

If the question is not copied incorrectly, then:

The equation about x (m-2) x squared -2 (x-1) x + m=0 has only one real root. >>>More

7 answers2024-04-05

x 3+ax 2+1) (x+1)=x 2-bx+1x 3+ax 2+1=x 3-bx 2+x+x 2-bx+1x 3+ax 2+1=x 3+(1-b)x 2+(1-b)x+1x 2 coefficients are equal to Lu Zheng: 1-b=a >>>More

13 answers2024-04-05

y=x(8-3x)^2

y'=(3x-8) 2+6x(3x-8)=(3x-8)(9x-8)x (0,2), x=8 9. >>>More

13 answers2024-04-05

x(x+1)(x+2)(x+3) 8, find the range of x values.

Solution: [x(x+3)][x+1)(x+2)]-8<0x +3x)(x +3x+2)-8=(x +3x) +2(x +3x)-8=(x +3x+4)(x +3x-2)<0 >>>More