-
The first one - t+1 4+36
The first two 2a (a + a b + ab).
The third k = 5
The fourth x -2xy+y -1=(x-y) -1=(x-y-1)(x-y+1).
The fifth is 2m+3n
6th x y-xy =xy(x-y)=6*5=30 (x+y) oak field=x +2xy+y =x +y +12=x +y +2xy-2xy+12=
Bright as x-y) +2xy+12=25+12+12=49
-
①x^4-12x+323
x^4+324-12x-1
x^4+36x^2+324)-(36x^2+12x+1)
x^2+18)^2-(6x+1)^2
x^2+18+6x+1)(x^2+18-6x-1)
x^2+6x+19)(x^2-6x+17)
x^4+7x^3+14x^2+7x+1
x^4+7x^3+12x^2 + 2x^2+7x + 1
x^2+3x)(x^2+4x) +x^2+3x + x^2+4x + 1
x^2+3x)(x^2+4x+1)+(x^2+4x+1)
x^2+3x+1)*(x^2+4x+1)
x 2-3x-3)(x 2+3x+4)-8 cannot be decomposed within the range of rational number coefficients, according to the factor theorem.
x^2y^2+1-x^2-y^2+4xy
x^2y^2+2xy+1-x^2-y^2+2xy
xy+1)^2-(x-y)^2
xy+1+x-y)(xy+1-x+y)
x^4+x^2+2ax+1-a^2
x^4+2x^2+1-x^2+2ax-a^2
x^2+1)^2-(x-a)^2
x^2+1+x-a)(x^2+1-x+a)
x+y)^4+x^4+y^4
x^2+2xy+ y^2)^2+x^4+y^4
x^4+y^4+4x^2y^2+2x^2y^2+4x^3y+4xy^3+ x^4+y^4
2[x^4+y^4+3x^2y^2+2xy(x^2+ y^2))]
2[x^4+y^4+2x^2y^2+2xy(x^2+ y^2)+ x^2y^2]
2[(x^2+y^2)^2+2xy(x^2+ y^2)+ xy)^2]
2(x^2+ y^2+xy)^2
a^3b-ab^3+a^2+b^2+1
a^3b-a^2b^2+a^2b^2+ab-ab-ab^3+a^2+b^2+1
a^3b-a^2b^2+ab+a^2b^2-ab^3+b^2+a^2-ab+1
ab(a^2-ab+1)+b^2(a^2-ab+1)+1(a^2-ab+1)
ab+b^2+1)(a^2-ab-1)
-
4a(9a^2-1)
4a(3a+1)(3a-1)
2.x + quarter y
y/2)^2-x^2
y/2+x)(y/2-x)
4(a-b)+3(a+b)][4(a-b)-3(a+b)](7a-b)(a-7b)
to the 4th power - to the 4th power of y.
x^2+y^2)(x^2-y^2)
x^2+y^2)(x+y)(x-y)
5.Factoring first, then evaluation:
x+y)²-x-y)²
x+y+x-y)(x+y-x+y)
2x*2y4xy
where x=1 y=2
4xy=46(x+p)²-x+q)²
x+p+x+q)(x+p-x-q)
2x+p+q)(p-q)
7.Four-ninths m
2m/3+
-
1. Original formula. 4a(9a²-1)
4a(3a+1)(3a-1)
2. Original formula. -[x²-(1/2y)²]
x+y/2)(x-y/2)
3. Original formula. [4(a-b)]²3(a+b)]²4a-4b+3a+3b][4a-4b-3a-3b](7a-b)(a-7b)
4. Original formula. (x²)²y²)²
x²+y²)(x²-y²)
x²+y²)(x+y)(x-y)
5. Original formula. (x+y)²-x-y)²
x+y+x-y)(x+y-x+y)
2x)(2y)4xy
6. Original formula. (x+p)²-x+q)²
x+p)+(x+q)][x+p)-(x+q)](2x+p+q)(p-q)
7. Original formula. Four-ninths m
2/3m)²
2/3m+
-
The first = 4a(9a2-1).Everything else is a problem, with the specific formula a 2-b 2=(a b)(a-b).
1.Extract the common factor.
This is the most basic. It's just that if there is a common factor, it will be brought up, and everyone will know this, so I won't say much. >>>More
1.Knowing a=10000 and b=9999, find the value of a + b -2ab-6a + 6b + 9. >>>More
Factorization: Formula method. Items of the same kind that can be merged should be merged.
2x 3-x 2+m has a factor of 2x+1, which means that when x=-1 2, 2x 3-x 2+m=0 >>>More
The factorization method is a method of following a quadratic equation.