I hope that the math problem of a one dimensional quadratic equation will be completed before noon t

Updated on educate 2024-08-06
15 answers
  1. Anonymous users2024-02-15

    Set up stocking for x days.

    Acquisition cost: 1000 30

    Stocking fee: 400x

    Number of deaths: 10x

    Remaining quantity: 1000-10x

    Sales revenue: (1000-10x) (30+x) + 10x * 20 profit: (1000-10x) (30 + x) + 10x * 20-1000 30-400x

    Equation: (1000-10x)(30+x)+10x*20-1000 30-400x=6250

    100-x)(30+x)+20x-3000-40x=625x^2+70x+3000-20x-3000=625x^2-50x+625=0

    x-25)^2=0

    x=25A: Sold at one time after 25 days of stocking.

  2. Anonymous users2024-02-14

    x is the number of days and y is the profit.

    y=(30+x)*(1000-10x)+20*10x-400x-30*1000

    500x-10x^2

    then 10x 2-500x+6250=0

    x-25)^2=0

    x = 2525 days.

  3. Anonymous users2024-02-13

    1000-10x)(30+x)+200-400x=6250 Find x is the number of days of stocking.

  4. Anonymous users2024-02-12

    Solution: 625*(1-20%)=500 (yuan) 500*(1+6%)=530 (yuan).

    Let the cost after the drop be x

    625*2-500*2=500+530-2*xx=390

  5. Anonymous users2024-02-11

    Solution: Let the cost after the drop be x

    625*2-500*2=500+530-2*xx=390

  6. Anonymous users2024-02-10

    According to the topic, it is known that because the water consumption is 15m in two months, the water consumption in March should be about 6 tons, and the water consumption in April should be within 6 to 10 tons.

    x+y=15

    2x+2*6+4*(y-6)=44

    Solution: x = 2 tons.

    y = 13 tons.

    A: 2 tons of water were used in March and 13 tons in April.

  7. Anonymous users2024-02-09

    Solution: Set the water use in March XM and the water use YM in April

    x+y=15①

    2x+2*6+4*(10-6)+8*(y-10)=44 from , x+4y=48

    , 3y=33

    y=11 Substitute y=11 to get x=4

    x=4, y=11 are the solutions of the original equations.

    A: The water used in March is 4m, and the water is used in April is 11m.

  8. Anonymous users2024-02-08

    Solution: It can be obtained by removing the parentheses on both sides of the equation at the same time.

    x^2-mx-2x+2m=p^2-mp-2p+2mx^2-(m+2)x=p^2-(m+2)px^2-p^2=(m+2)(x-p)

    x-p)(x+p)=(m+2)(x-p)

    So x1=p x2=m+2-p

  9. Anonymous users2024-02-07

    1.Set the unit price of apples to be x yuan.

    30-4-2x)/3=(30+8-3x)/44(26-2x)=3(38-3x)

    104-8x=114-9x

    x=10 peaches unit price = (26-2*10) 3=2 yuan.

    Apples and peaches are priced at 10 yuan and 2 yuan each.

    It also takes x hours to set the armor, x 8 + (1 8 + 1 6) = 1

    x/8+7/24=1

    x/8=17/24

    x=17/3

    A still do 17 for 3 hours.

  10. Anonymous users2024-02-06

    The first problem uses a unary equation, hehe, it's still binary simple!

    2x+3y=26, 3x+4y=38, just solve it!

    Question 2: 1 8*x=1-1 6, solve x out of -1!

  11. Anonymous users2024-02-05

    1 Let the apple be x yuan and the peach y yuan yuan, and the columnable equation is 2x+3y+4=30

    3x+4y-8=30

    The solution is x=10 y=2

    2. Let the total project be 1 A do 1 8 in one hour and B do 1 61-(1 8 + 1 6) * 1 = 17 24

    17 24 divided by 1 8 gives 17 3 hours.

  12. Anonymous users2024-02-04

    It is set to arrive in x hours.

    50x+20=50(x+24/60)=75(x-24/60)=75x-30→x=(20+30)/(75-50)=2

    50*2+20)/2=60。He travels at a speed of 60 kilometers per hour and arrives on time.

  13. Anonymous users2024-02-03

    Set up a large car to transport x tons each time and a small car to transport y tons each time.

    2x+3y= launch 4x+6y=315x+6y=35

    Launch x=4 y=

    3 large carts and 5 small carts can transport 12+ tons at a time).

    Hope it helps.

  14. Anonymous users2024-02-02

    The small car transports XT at one time, and the large cart transports YT at one time

    3x+2y=

    6x+5y=35

    x= y=4

    5x+3y=

    3 large carts and 5 small carts can transport goods at one time.

  15. Anonymous users2024-02-01

    Solution: Set up a large car to transport x t, a small car to transport y t, from the question to know:

    2x+3y=。。1)

    5x+6y=35。。。2)

    2) Formula (1) *2 gets: x 4

    Substituting equation (1) gets: y

    So 3x+5y 3*4+5*

Related questions
10 answers2024-08-06

From Vedder's theorem, mn=7, m+n=-2008

Because m and n are two equations, m +2007m + 6 = -m - 1, n +2009n + 8 = n + 1 >>>More

16 answers2024-08-06

Divide by 3 to get x 2+2x-4 3=0

Recipe x 2+2x+1-1-4 3=0 x+1) 2-7 3=0 Then move the root to get two. >>>More

21 answers2024-08-06

There are x people to go, obviously x > 25, (because if x25, the cost is 25,000 yuan, and the actual cost is 27,000 yuan, which does not match.) ) >>>More

4 answers2024-08-06

Unary quadratic equations.

There are four solutions, they are the direct leveling method and the matching method. >>>More

13 answers2024-08-06

mx2-4x+5=0 (1)

x2-4mx+4m2-3m-3=0 (2) can be obtained from (1)-(2). >>>More