-
Solution: Let the original function of the function (-2x+1)e (-x) be y.
y=∫(-2x+1)e^(-x)dx
2x-1)e^(-x)d(-x)
2x-1)d[e (-x)] is obtained using the partial integral formula:
2x-1)e^(-x)-∫e^(-x)d(2x-1)(2x-1)e^(-x)+2∫e^(-x)d(-x)2xe^(-x)-e^(-x)+2e^(-x)+c(2x+1)e^(-x)+c
Therefore, the original function of the function (-2x+1)e (-x) is: (2x+1)e (-x)+c
-
You are equivalent to parsley to find a normal distribution.
If the function exists, the book will not need to appear its distribution results in the form of a list.
Here's the formula for your reference:
e^(-x^2) =n,0,∞]x^(2 n) (1)^n)/n!
So he dressed up e (-x 2)dx= n,0, ]x (2 n) (1) n) n!dx
n,0,∞]1)^n x^(1 + 2 n))/1 + 2 n) n!)
where [n,0, ]f(n) means that the sum of f(n) is taken from 0 to +, and of course n is only an integer.
-
e 2xOriginal function: 1 2e 2x+ is a constant.
The analysis process is as follows:
Finding the original function of e 2x is finding the indefinite integral of e 2x.
e^2xdx
1/2∫e^2xd2x
1 2e 2x+c (c is constant).
Formula for indefinite integrals.
1. A dx = ax + c, a and c are constants.
2. Front pin x a dx = x (a + 1)] a + 1) +c, where a is a constant and a ≠ 1
3、∫ 1/x dx = ln|x| +c
4. A x dx = 1 LNA) A x + C, where A > 0 and A ≠ 1
5、∫ e^x dx = e^x + c
6. cosx dx = sinx + c
7. Pure chain sinx dx = cosx + c
8、∫ cotx dx = ln|sinx| +c = ln|cscx| +c
-
(-2x+1)e^(-x)dx
Huai Sui Cha (-2x+1)d[-e (-x)](2x+1)*[e (-x)]-e (-x)d(-2x+1)2xe (-x)-e (-x)- e (-x)*(2)dx2xe (-x)-e (-x)+2 e (-x)d(-x)2xe (-x)-e (-x)+e (-x)2xe (-x)
The proto-finch function of 2x+1)e (-x) is 2xe (-x)+c
-
e^(2x)/(1+e^(2x)) dx
1/2)∫ dln(1+e^(2x))
1/2)ln(1+e^(2x)) c
E (2x) (1+e (2x)) = (1 2)ln(1+e (2x)) c
y=(x 2-3x+2) (x 2+2x+1), define the field: x is not equal to -1 move and tidy: >>>More
Find the integral for (1+x 2).
Make a triangular substitution, so that x=tant >>>More
Solution: Defined domain of y=2x+1.
is r, and the range is r >>>More
f'(x)=2-1 x 2=(2x 2-1) x 2, let f'(x)=0: x= 2 2 x (0, 2 2 ) f'(x)<0,x ( 2 2, + f'(x) >0, so f(x) decreases on (0, 2 2) and increases on (2 2, +).
Answer: A (1-2a).
It's a very simple question, actually. >>>More