The sequence an satisfies a1 1 a2 3 2 an 2 3 2an 1 1 2an so that bn 3n 2 is calculated

Updated on educate 2024-04-14
5 answers
  1. Anonymous users2024-02-07

    Because an+2=3 2an+1-1 2an

    So an+2-an+1=1 2an+1-1 2an=1 2(an+1-an).

    And because a2-a1=3 2-1=1 2

    Therefore, the number column is a proportional series with the first term 1 2 and the common ratio is 1 2.

    i.e. an+1-an=(1 2) n

    an+1-a1=(1/2)^n+(1/2)^(n-1)+…1/2=1-(1/2)^n

    So an+1=2-(1 2) n

    an=2-(1/2)^(n-1)

    an*bn=(3n-2)(2-(1/2)^(n-1))=3n-2-(3n-2)*(1/2)^(n-1))

    sn=(1+4+……3n-2))-1*1+4*(1/2)+…3n-2)*(1/2)^(n-1)]

    Let tn=[1*1+4*(1 2)+....3n-2)*(1/2)^(n-1)]

    It can be seen that 2tn-tn=[1*2+4*1+......3n-2)*(1/2)^(n-2)]-1*1+4*(1/2)+…3n-2)*(1/2)^(n-1)]

    2+3[1+(1/2)+…1/2)^(n-2)]-3n-2)*(1/2)^(n-1)

    8-3*(1/2)^(n-2)-(3n-2)*(1/2)^(n-1)

    8-(3n-8)*(1/2)^(n-1)

    And because, 1+4+......3n-2)=n(3n-1)/2

    So, sn=n(3n-1) 2-tn=n(3n-1) 2-8+(3n-8)*(1 2) (n-1).

  2. Anonymous users2024-02-06

    an+2=3 2an+1-1 2an is not clearly described, you can probably guess it.

    an+((1/2)an)+2=(3/2)a(n+1)3/2)an+1=(3/2)a(n+1)

    a(n+1)=a(n)+4/3;Arithmetic progression.

    But is n starting from ** n>=2?

    If so, it is a(n)=3 2+(n-2)*4 3=4n 3-7 6a(n)-b(n)=-5n 3-19 6

    s(n) ask for it yourself, n>=2

  3. Anonymous users2024-02-05

    is 1 2an=1 2a(n-1)+1, multiply both sides by 2 at the same time to get 1 an=1 a(n-1)+2 then (1 an) can be regarded as an equal difference series a1=1 from the second push spike nucleus 1 an=2n-1 an=1 (2n-1) a1*a2+a2*a3+...an*an+1=1/1*3+1/3*5+..1/(2n-1)*(2n+1)>16/33 1/1*3+1/3*5+..

    1 (2n-1)*(2n+1) is obtained by the elimination of the rift term = (1-1 collapse (2n+1)) 2

    1-1 (2n+1)) 2 >16 33 Launched Trapped Circle N>16

  4. Anonymous users2024-02-04

    an+2 - an+1=1/2an+1 - 1/2an

    an+2 - an+1)(an+1 - an)=1/2

    The number sequence {an - an-1} is a proportional series with a common ratio of 1 2.

    an - an-1=(a2-a1)1/2^(n-2)=1/2^(n-1)

    So we get an-1 - an-2=1 2 (n-2).

    a3-a2=1/2^2

    a2-a1=1 2 Add left and left, and right and right add to get.

    an-a1=1/2^(n-1)+1/2(n-2)+.1/2^2+1/2

    an=1/2^(n-1)+1/2(n-2)+.1/2^2+1/2+1/2^0

    an=(1-1/2^n)/(1-1/2)

    2-1/2(n-1)

    When n=1, a1=2-1=1

    When n=2, a2=2-1 2=3 2

    So an=2-1 2(n-1) (n=>1, n is a positive integer).

  5. Anonymous users2024-02-03

    a1a2+a2a3+…+ana(n+1)=na1a(n+1)

    a1a2+a2a3+…+a(n-1)ana=(n-1)a1an

    Subtract the two formulas.

    ana(n+1)=na1a(n+1)-(n-1)a1an

    Both sides of the equation are divided by ana(n+1) at the same time

    1=na1/an-(n-1)a1/a(n+1)

    1/a1=n/an-(n-1)/a(n+1)

    n/an-(n-1)/a(n+1)=1/(1/4)

    n/an-(n-1)/a(n+1)=4...1

    In the same way, (n-1) a(n-1)-(n-2) an=4....2

    1-2 formula.

    2(n-1)/an-(n-1)/a(n+1)-(n-1)/a(n-1)=0

    2(n-1)/an=(n-1)/a(n+1)+(n-1)/a(n-1)

    2/an=1/a(n+1)+1/a(n-1)

    So 1 an is a series of equal differences

    d=1/a2-1/a1

    11/an=1/a1+(n-1)d

    1/(1/4)+n-1

    4+n-1n+3

    1/a1+1/a2+..1/a97

Related questions
10 answers2024-04-14

Solution: (1) Let n=1 get 1 2a1=2*1+5=7, so a1=142)1 2a1+1 2*2a2+.1/2nan= 2n+5 (1)1/2a1+1/2*2a2+.. >>>More

10 answers2024-04-14

b(n+1)=2b(n)+2

b(n+1)+2=2[b(n)+2] >>>More

15 answers2024-04-14

The formula for the nth term of the equal difference series an=a1+d(n-1) (a1 is the first term, d is the tolerance, and n is the number of terms). >>>More

15 answers2024-04-14

The easiest way to do this is to put 1, 2, and 3 numbers into n. >>>More