Urgent!! In ABC, let the edges of A B C be a b c, and the vectors m cosA, sinA

Updated on educate 2024-05-06
7 answers
  1. Anonymous users2024-02-09

    m = (cosa, sina), m² = cos²a + sin²a = 1

    n = (√2-sina, cosa), n² = (√2-sina)² cos²a = 3 - 2 √2 sina

    mn = cosa(√2-sina)+sinacosa = √2 cosa

    m+n| = √(m²+n²+2mn) = √(1+3- 2√2 sina + 2√2 cosa) = √(4- 2√2 sina + 2√2 cosa) = 2

    cosa = sina

    a = 45°

    a sina = c sinc sinusoidal theorem.

    sinc = c sina / a = √2 a sin45° /a = 1

    c = 90°

    b = 180°-a-c = 180°-45°-90° = 45°

    a = b = 4√2

    ABC is an isosceles right-angled triangle with right-angled sides being A and B

    s = ½ ab = ½ x 4√2 x 4√2 = 16

  2. Anonymous users2024-02-08

    Because: sina*cosa+2=17 8

    Soyama repents: sina*cosa=1 8

    sina + cosa) 2 = 1 + 2 sina * cosa = 5 4 sina - cosa) 2 = 1-2 sina*cosa = 3 4a belongs to the deficit (0, 4), so sina

  3. Anonymous users2024-02-07

    (a-c)*(b-c)=ab-ac-bc+cc=-c(a+b-c)

    The minimum value is required, that is, a+b-c is the smallest, and a is perpendicular to b, so a+b can obtain: root number 2, and the previous one should make a+b-c the smallest, then (a+b) is in the same direction as c, and finally calculated: its minimum value is 1-root number 2

  4. Anonymous users2024-02-06

    (a-c)·(b-c)=a·b-c·(a+b)+c^2=-c·(a+b)+c^2

    Because a·b=0

    A is perpendicular to b, a+b = root number 2 and 45 degrees to a or b are unit vectors, so c 2 = 1

    Converting the known minimum value into finding c· (a+b) maximum if and only if c is in the same direction as (a+b).

    C· (a+b) = root number 2

    In summary:(a-c)· (b-c) = 1 - root number 2

    Happy learning

  5. Anonymous users2024-02-05

    Vector p vector q, 1-sina)*2sina-12 7*cos2a=0.

    2sina-2sin^2a-12/7(1-2sin^2a)=0.

    5sina-3)(sina+2)=0.

    5sina-3=0.

    sina=3/5;sina+2=0, sina=-2, rounded.

    sina=3/5.--A1

    2)s△abc=(1/2)bcsina=(1/2)*2*c*(3/5)=3.

    c=5.Apply the cosine theorem: a 2 = b 2 + c 2-2 bccosa=2 2+5 2-2*2*5*(4 5) [cosa= (1-sin 2a)=4 5].

    a^2=13.

    a= 13 --A2

  6. Anonymous users2024-02-04

    a+b=(cosa-1 2,sina+ 3 2)a-b=(cosa+1 2,sina- 3 2)then (a+b)· (a-b)

    cosa-1/2)(cosa+1/2)+(sina+√3\2)(sina-√3\2)

    cosa) 2-1 4+(sina) 2-3 4 again. (cosa)^2

    sina)^2

    So. i.e. (a+b)· (a-b)=0

    So: vector a + vector b is perpendicular to vector a - vector b.

    3a+b=(3cosa-1 2, 3sina+ 3 2)a- 3b=(cosa+ 3 2,sina-3 2) 3a+b with.

    The modulo equality of a-3b is:

    3cosa-1/2)^2+(√3sina+√3/2)^2=(cosa+√3/2)^2+(sina-3/2)^2

  7. Anonymous users2024-02-03

    Knowing that a is an acute angle, then: sina>0, cosa>0(1) If the vector a·b=13 6, then:

    2*1+sina*cosa=13/6

    That is: sina*cosa=1 6

    Then: (sina + cosa) = sin a + 2 sina * cosa + cos a = 1 + 2 sina * cosa = 1+

    Solution: sina + cosa = 2 (root number 3) 3 (2) If the vector a b, then:

    2*cosa-sina*1=0

    That is: sina = 2cosa

    Because sin a+cos a=1, so: 4cos a+cos a=1 i.e.: cos a=1 5

    Solution: cosa = (root number 5) 5, sina = 2 cosa = 2 (root number 5) 5

    Then: sin2a=2sina*cosa=4 5,cos2a=2cos a-1=2 5

    So: sin(2a+3).

    sin(2a)cos(3)+cos(2a)sin(3)(-3 5)*(root number 3) 2

    4-3 root number 3) 10

Related questions
15 answers2024-05-06

Have you ever learned the Pythagorean theorem for triangles? If you learn it, it's easy to solve. >>>More

7 answers2024-05-06

<> solution: Let the midpoint of BC be d, the central angle of the circle is equal to half of the circumferential angle, BOD=60°, and in the right-angled triangle BOD, there is OD=1 >>>More

10 answers2024-05-06

According to the Pythagorean theorem: ab 2 = bc 2 + ac 2 gives 13 2 = 5 2 + ac 2 solution gives ac = 12 >>>More