-
m = (cosa, sina), m² = cos²a + sin²a = 1
n = (√2-sina, cosa), n² = (√2-sina)² cos²a = 3 - 2 √2 sina
mn = cosa(√2-sina)+sinacosa = √2 cosa
m+n| = √(m²+n²+2mn) = √(1+3- 2√2 sina + 2√2 cosa) = √(4- 2√2 sina + 2√2 cosa) = 2
cosa = sina
a = 45°
a sina = c sinc sinusoidal theorem.
sinc = c sina / a = √2 a sin45° /a = 1
c = 90°
b = 180°-a-c = 180°-45°-90° = 45°
a = b = 4√2
ABC is an isosceles right-angled triangle with right-angled sides being A and B
s = ½ ab = ½ x 4√2 x 4√2 = 16
-
Because: sina*cosa+2=17 8
Soyama repents: sina*cosa=1 8
sina + cosa) 2 = 1 + 2 sina * cosa = 5 4 sina - cosa) 2 = 1-2 sina*cosa = 3 4a belongs to the deficit (0, 4), so sina
-
(a-c)*(b-c)=ab-ac-bc+cc=-c(a+b-c)
The minimum value is required, that is, a+b-c is the smallest, and a is perpendicular to b, so a+b can obtain: root number 2, and the previous one should make a+b-c the smallest, then (a+b) is in the same direction as c, and finally calculated: its minimum value is 1-root number 2
-
(a-c)·(b-c)=a·b-c·(a+b)+c^2=-c·(a+b)+c^2
Because a·b=0
A is perpendicular to b, a+b = root number 2 and 45 degrees to a or b are unit vectors, so c 2 = 1
Converting the known minimum value into finding c· (a+b) maximum if and only if c is in the same direction as (a+b).
C· (a+b) = root number 2
In summary:(a-c)· (b-c) = 1 - root number 2
Happy learning
-
Vector p vector q, 1-sina)*2sina-12 7*cos2a=0.
2sina-2sin^2a-12/7(1-2sin^2a)=0.
5sina-3)(sina+2)=0.
5sina-3=0.
sina=3/5;sina+2=0, sina=-2, rounded.
sina=3/5.--A1
2)s△abc=(1/2)bcsina=(1/2)*2*c*(3/5)=3.
c=5.Apply the cosine theorem: a 2 = b 2 + c 2-2 bccosa=2 2+5 2-2*2*5*(4 5) [cosa= (1-sin 2a)=4 5].
a^2=13.
a= 13 --A2
-
a+b=(cosa-1 2,sina+ 3 2)a-b=(cosa+1 2,sina- 3 2)then (a+b)· (a-b)
cosa-1/2)(cosa+1/2)+(sina+√3\2)(sina-√3\2)
cosa) 2-1 4+(sina) 2-3 4 again. (cosa)^2
sina)^2
So. i.e. (a+b)· (a-b)=0
So: vector a + vector b is perpendicular to vector a - vector b.
3a+b=(3cosa-1 2, 3sina+ 3 2)a- 3b=(cosa+ 3 2,sina-3 2) 3a+b with.
The modulo equality of a-3b is:
3cosa-1/2)^2+(√3sina+√3/2)^2=(cosa+√3/2)^2+(sina-3/2)^2
-
Knowing that a is an acute angle, then: sina>0, cosa>0(1) If the vector a·b=13 6, then:
2*1+sina*cosa=13/6
That is: sina*cosa=1 6
Then: (sina + cosa) = sin a + 2 sina * cosa + cos a = 1 + 2 sina * cosa = 1+
Solution: sina + cosa = 2 (root number 3) 3 (2) If the vector a b, then:
2*cosa-sina*1=0
That is: sina = 2cosa
Because sin a+cos a=1, so: 4cos a+cos a=1 i.e.: cos a=1 5
Solution: cosa = (root number 5) 5, sina = 2 cosa = 2 (root number 5) 5
Then: sin2a=2sina*cosa=4 5,cos2a=2cos a-1=2 5
So: sin(2a+3).
sin(2a)cos(3)+cos(2a)sin(3)(-3 5)*(root number 3) 2
4-3 root number 3) 10
Have you ever learned the Pythagorean theorem for triangles? If you learn it, it's easy to solve. >>>More
<> solution: Let the midpoint of BC be d, the central angle of the circle is equal to half of the circumferential angle, BOD=60°, and in the right-angled triangle BOD, there is OD=1 >>>More
1. Because a=90
So b+ c=90 >>>More
Because ab=bc
So bac= c >>>More
According to the Pythagorean theorem: ab 2 = bc 2 + ac 2 gives 13 2 = 5 2 + ac 2 solution gives ac = 12 >>>More