Knowing sin cos 1 5, 0, , find the values of each of the following equations

Updated on educate 2024-06-06
9 answers
  1. Anonymous users2024-02-11

    sinθ+cosθ=-1/5 , 5sinθ=-(5cosθ+1), 25sin³θ=25cos³θ+10cosθ+1=25-25cos³θ

    50cos +10cos -24=0, (5cos -3)(5cos +4)=0, cos =-4 5 , cos =3 5 rounded).

    1) cos +cos = 16 25-64 125 = 16 1252) sin to the fourth power + cos to the fourth power = (sin +cos) 2sin cos = 1-2sin cos

    3)tanθ=sinθ/cosθ=(3/5)/(-4/5)=-3/4

  2. Anonymous users2024-02-10

    It's all good, I can't do it.

  3. Anonymous users2024-02-09

    Sorry, the third formula you entered is incomplete and cannot be evaluated. Please provide the full formula, I will do my best to close the town. The following is the evaluation process for the first two equations:

    1) What is the cubic root of (125)?

    If x is the square root of the three brigades marked as (-125), then there is x 3 = 125. Open cubic on both sides at the same time, get:

    x = 125)^(1/3) =5

    Therefore, the cubic root of (-125) is -5.

    2) [5]((How much?)

    First, calculate the value of ( and get: car standby.

    Then, take the integer part of 5, i.e.:

    Therefore, [5](() has a value of 0.

  4. Anonymous users2024-02-08

    1.(1) Original formula = (4tan-2) (5+3tan) [the numerator and denominator are divided by tan].

    2) Original formula = (sincos) (sin 2+cos 2)tan tan 2+1

    3) Original formula = sin 2 + cos 2 + 2 sincos4) It seems that the question is wrong.

    Voltaic 2sin = 1 2

    cos = root number 3 2

    1) Original = cos(-a).

    cosa Root Hall Qi No. 3 2

    2) Original formula = -tana = -sina cosa (-1 2) (root number 3 2) rift.

    Root number 3 3 cos25 6 + cos25 3 + tan (-25 4) cos 6 + cos 3-tan 4

    Root number 3 2 + 1 2-1

    Root No. 3-1) 2

    sin2+cos3+tan4 [no special angles, only calculator can be calculated] sin2

    cos3≈tan4≈

    Adds up to vested:

    Played for a long time,

  5. Anonymous users2024-02-07

    When x=5,y=1, x-y - x+y =5-1)-(5+1) =2

    When x=5,y=-1, x-y - Yun Zheng x+y =5+1)-(5-1) =2

    When x=-5,y=1, x-y - x+y =5-1)-(Sun-5+1) =2

    When x=5,y=1, x-y - x+y =5-1)-(5+1) =2

    So x =5, Ponkaison y =1, then x-y - x+y =2

  6. Anonymous users2024-02-06

    1) Because sinx+cosx=1 5, and (sinx) 2+(cosx) 2=1

    i.e. (sinx+cosx) 2-2sinxcosx=1, so 1 25-2sinxcosx=1

    So 2sinxcosx=-24 25

    And because (sinx) 2+(cosx) 2=(sinx-cosx) 2+2sinxcosx=1

    The shouted segment starts with (sinx-cosx) 2-24 25=1, so (sinx-cosx) 2=49 25

    And because 00, and 2sinxcosx=-24 25<0, cosx<0

    So sinx-cosx>0, so (2)sinx-cosx=7 5

    and sinx + cosx = 1 5 phase Hu perkkaigard: sinx = 4 5, so cosx = -3 5

    So (1) tanx=-4 3

    So sinx=1 5-cosx=4 5

    Because sin 3x+cos 3x=(sinx+cosx)(sin 2x-sinx*cosx+cos 2x).

    Substituting the data to get.

    3)sin^3x+cos^3x=1/5*(16/25+12/25+9/25)=37/125

  7. Anonymous users2024-02-05

    1) Because sinx+cosx=1 5, and (sinx) 2+(cosx) 2=1

    i.e. (sinx+cosx) 2-2sinxcosx=1, so 1 25-2sinxcosx=1

    So 2sinxcosx=-24 25

    And because (sinx) 2+(cosx) 2=(sinx-cosx) 2+2sinxcosx=1

    So (sinx-cosx) 2-24 25=1, so (sinx-cosx) 2=49 25

    And because 00, and 2sinxcosx=-24 25<0, cosx<0

    The shouted segment is sinx-cosx>0, so (2) sinx-cosx=7 5

    Add sinx+cosx=1 5 to get sinx=4 5, so cosx=-3 5

    So (1) tanx=-4 3

    So sinx=1 5-cosx=4 Hu Seekai 5

    Because the pants are called sin 3x+cos 3x=(sinx+cosx)(sin 2x-sinx*cosx+cos 2x).

    Substituting the data to get.

    3)sin^3x+cos^3x=1/5*(16/25+12/25+9/25)=37/125

  8. Anonymous users2024-02-04

    (sina+cosa)²=(-1/5)²

    1+2sinacosa=1/25

    sinacosa=-12/25

    According to: sina cosa = 1 5, sin a cos a = 1 1 solution: sina = 4 5, cosa = 3 5 [rounded], or: sina = 3 5, cosa = 4 5

    Then: sina = 3 5, cosa = 4 5

    sina-cosa=7/5

    sin^4a+cos^a=81/625+256/625=337/625

    sin³+cos³a=-37/125

    sin^4a-cos^4a=-7/25

  9. Anonymous users2024-02-03

    The sin cos 12 25 synapsis solution can be solved by sin 3 5 cos 4 5 The following calculations can be brought in.

Related questions
6 answers2024-06-06

Because tan = 3 so sin = 3cos, according to the Pythagorean theorem: (sina) 2+(cosa) 2=1, the simultaneous solution obtains: cosa = plus or minus (10 under the root number) 10, substituting the following equation can be obtained. >>>More

9 answers2024-06-06

6(sina) 2+sina*cosa-2(cosa) 2=03sina+2cosa)(2sina-cosa)=03sina+2cosa=0 or 2sina-cosa=0tana=-2 3 or tana=1 2 >>>More

12 answers2024-06-06

Is it the path of power?

Enter the door in the order of "red, green, green, red, red". >>>More

10 answers2024-06-06

Its derivative is f'(x)=1/x-a/x²

When a 0, f'(x) 0, monotonically increasing, no extremum. >>>More

11 answers2024-06-06

cosx=1/4

x in the first. 1. Fourth Quadrant. >>>More