-
sinθ+cosθ=-1/5 , 5sinθ=-(5cosθ+1), 25sin³θ=25cos³θ+10cosθ+1=25-25cos³θ
50cos +10cos -24=0, (5cos -3)(5cos +4)=0, cos =-4 5 , cos =3 5 rounded).
1) cos +cos = 16 25-64 125 = 16 1252) sin to the fourth power + cos to the fourth power = (sin +cos) 2sin cos = 1-2sin cos
3)tanθ=sinθ/cosθ=(3/5)/(-4/5)=-3/4
-
It's all good, I can't do it.
-
Sorry, the third formula you entered is incomplete and cannot be evaluated. Please provide the full formula, I will do my best to close the town. The following is the evaluation process for the first two equations:
1) What is the cubic root of (125)?
If x is the square root of the three brigades marked as (-125), then there is x 3 = 125. Open cubic on both sides at the same time, get:
x = 125)^(1/3) =5
Therefore, the cubic root of (-125) is -5.
2) [5]((How much?)
First, calculate the value of ( and get: car standby.
Then, take the integer part of 5, i.e.:
Therefore, [5](() has a value of 0.
-
1.(1) Original formula = (4tan-2) (5+3tan) [the numerator and denominator are divided by tan].
2) Original formula = (sincos) (sin 2+cos 2)tan tan 2+1
3) Original formula = sin 2 + cos 2 + 2 sincos4) It seems that the question is wrong.
Voltaic 2sin = 1 2
cos = root number 3 2
1) Original = cos(-a).
cosa Root Hall Qi No. 3 2
2) Original formula = -tana = -sina cosa (-1 2) (root number 3 2) rift.
Root number 3 3 cos25 6 + cos25 3 + tan (-25 4) cos 6 + cos 3-tan 4
Root number 3 2 + 1 2-1
Root No. 3-1) 2
sin2+cos3+tan4 [no special angles, only calculator can be calculated] sin2
cos3≈tan4≈
Adds up to vested:
Played for a long time,
-
When x=5,y=1, x-y - x+y =5-1)-(5+1) =2
When x=5,y=-1, x-y - Yun Zheng x+y =5+1)-(5-1) =2
When x=-5,y=1, x-y - x+y =5-1)-(Sun-5+1) =2
When x=5,y=1, x-y - x+y =5-1)-(5+1) =2
So x =5, Ponkaison y =1, then x-y - x+y =2
-
1) Because sinx+cosx=1 5, and (sinx) 2+(cosx) 2=1
i.e. (sinx+cosx) 2-2sinxcosx=1, so 1 25-2sinxcosx=1
So 2sinxcosx=-24 25
And because (sinx) 2+(cosx) 2=(sinx-cosx) 2+2sinxcosx=1
The shouted segment starts with (sinx-cosx) 2-24 25=1, so (sinx-cosx) 2=49 25
And because 00, and 2sinxcosx=-24 25<0, cosx<0
So sinx-cosx>0, so (2)sinx-cosx=7 5
and sinx + cosx = 1 5 phase Hu perkkaigard: sinx = 4 5, so cosx = -3 5
So (1) tanx=-4 3
So sinx=1 5-cosx=4 5
Because sin 3x+cos 3x=(sinx+cosx)(sin 2x-sinx*cosx+cos 2x).
Substituting the data to get.
3)sin^3x+cos^3x=1/5*(16/25+12/25+9/25)=37/125
-
1) Because sinx+cosx=1 5, and (sinx) 2+(cosx) 2=1
i.e. (sinx+cosx) 2-2sinxcosx=1, so 1 25-2sinxcosx=1
So 2sinxcosx=-24 25
And because (sinx) 2+(cosx) 2=(sinx-cosx) 2+2sinxcosx=1
So (sinx-cosx) 2-24 25=1, so (sinx-cosx) 2=49 25
And because 00, and 2sinxcosx=-24 25<0, cosx<0
The shouted segment is sinx-cosx>0, so (2) sinx-cosx=7 5
Add sinx+cosx=1 5 to get sinx=4 5, so cosx=-3 5
So (1) tanx=-4 3
So sinx=1 5-cosx=4 Hu Seekai 5
Because the pants are called sin 3x+cos 3x=(sinx+cosx)(sin 2x-sinx*cosx+cos 2x).
Substituting the data to get.
3)sin^3x+cos^3x=1/5*(16/25+12/25+9/25)=37/125
-
(sina+cosa)²=(-1/5)²
1+2sinacosa=1/25
sinacosa=-12/25
According to: sina cosa = 1 5, sin a cos a = 1 1 solution: sina = 4 5, cosa = 3 5 [rounded], or: sina = 3 5, cosa = 4 5
Then: sina = 3 5, cosa = 4 5
sina-cosa=7/5
sin^4a+cos^a=81/625+256/625=337/625
sin³+cos³a=-37/125
sin^4a-cos^4a=-7/25
-
The sin cos 12 25 synapsis solution can be solved by sin 3 5 cos 4 5 The following calculations can be brought in.
Because tan = 3 so sin = 3cos, according to the Pythagorean theorem: (sina) 2+(cosa) 2=1, the simultaneous solution obtains: cosa = plus or minus (10 under the root number) 10, substituting the following equation can be obtained. >>>More
6(sina) 2+sina*cosa-2(cosa) 2=03sina+2cosa)(2sina-cosa)=03sina+2cosa=0 or 2sina-cosa=0tana=-2 3 or tana=1 2 >>>More
Is it the path of power?
Enter the door in the order of "red, green, green, red, red". >>>More
Its derivative is f'(x)=1/x-a/x²
When a 0, f'(x) 0, monotonically increasing, no extremum. >>>More
cosx=1/4
x in the first. 1. Fourth Quadrant. >>>More