-
If | 3b-3|+|2a-b-3 |=0, find the value of 5(2a-b)-2(6a-2b+2)+(4a-3b) to the process.
Solution: |3b-3|AND |2a-b-3 |are two non-negative numbers, the sum of which is 0, and there must be:
3b-3=0...1)
2a-b-3=0...2)
b = 1 from (1) and a = 2 by (2).
Therefore, 5(2a-b)-2(6a-2b+2)+(4a-3b)=(10a-5b)-(12a-4b+4)+(4a-3b).
2a-4b-4=2×2-4×1-4=-4
-
Because the absolute value is greater than or equal to 0, the sum of the two absolute values is equal to 0, so 3b-3=0, b=1, 2a-b-3=0, a=2
Substitute a=2,b=1 into 5(2a-b)-2(6a-2b+2)+(4a-3b) to get -4
-
It should be 0, not -4, how do you calculate it, 2a-4b is 2x2-4x1, and the result is 0
-
Because the absolute value is not negative.
So 3b-2=0 2a-b-3=0
b=2/3 2a-2/3-3=0
a=11/6
Substitute the values of a and b into 5(2a-b)-2(6a-2b+2)+(4a-3b-1 2).
-
Because the absolute value is a non-negative number.
So |3b-2|=0 |2a-b-3|=0 dang|3b-2|= 0, b = two-thirds.
When|2a-b-3|=0, b = two-thirds, a = eleven sixths.
After a and b are calculated, simplify the formula first, and then substitute it to calculate. (I've just learned, I don't know if it's right).
-
Known |3a+b+5|+|2a-2b-2|=0 because |3a+b+5|>=0,|2a-2b-2|>=0, so |3a+b+5|=0,|2a-2b-2|=0,3a+b+5=0,..1)
2a-2b-2=0,..2)
6a+2b+10+2a-2b-2=0,8a=-8,a=-1,a=-1 substituted into 2):
2(-1)-2b-2=0,b=-2;
2a²-3b=2(-1)²-3(-2)=2+6=8;
-
Solution: 2a+3b) -a+5b)(a-5b)+(2a-3b) 2(4a+12ab+9b)-a-25b)+4a-12ab+9b)
4a +12ab+9b -a +25b +4a -12ab+9b
7a²-43b²
-
4a^2-b^2+3(4a^2-4ab+b^2)+(9a^2+12ab)-2a^2+3
4a^2-b^2+12a^2-12ab+3b^2-9a^2+12ab-2a^2+3
5a^2+2b^2+3
When the absolute width of the segment is a=-1, b=1 2, the grip is bright.
Original = 5(-1) 2+2(1 2) 2+317 macro pre-2
-
(2a+3b)(2a-3b)+(a-3b)^2=4a²-9b²+a²-6ab+9b²..
5a²-6ab...Merge items of the same kind.
a(5a-6b) .Extract the common factor.
Solution: From known conditions, obtained.
3b-2=0 >>>More
a+3b=3+2m,3a+b=-2m+6
The sum of the two formulas. >>>More
Unless otherwise specified, there are 29 sets of integer solutions, and any substitution will be counted as the answer. >>>More
Solution:1. Because a+b=3, ab=1, 1 a+1 b=(a+b) ab
2。Because 1 a+1 b=5 >>>More
A square of AB + B square - A square of B square - B square = A square of AB - A square of B square of B square. >>>More