-
Look at me, it's simple and straightforward.
a is the base, a>0, g(x)=2-ax is the subtraction function, (the base is greater than 0)f(x)=loga g(x) is the subtraction function, a>1, (the monotonicity of the composite function, that is, the internal and external functions increase in contrast, and the whole composite function is the subtraction function).
On [0,1] is the subtractive function, when x=1 2-ax is the smallest, at this time 2-a>0, a<2 (true number greater than 0).
-
Since y loga(2 ax) is a subtraction function of x on [0,1], a 0 and a ≠ 1 are known from the definition of the logarithmic function
1.When 0 < a < 1, satisfying 2 - ax is an increment function and obviously does not hold.
2.When a > 1, meet 2 - ax > 0 constant.
i.e. 2 - a > 0
So a < 2 gives 1 < a < 2
In summary: the value range of a is 1 < a < 2
-
A is greater than 1 when the function is subtractive and 2-ax is greater than 0
ax is greater than -2
Because x belongs to (
a greater than -2a less than 2a (
-
If you have any questions, please feel free to ask.
-
What about the topic? See if I will.
Questions. <>
-
When m=1, n=2, f(x)=ax m(1-x) n=ax(1-x)2=a(x 3-2x 2+x), so f'(x) = a(3x-1)(x-1), let f'(x)=0x=
x=1, i.e. the function is in x=1 3
-
of one-third square] and then minus one-second square, so that it is solved as 8 1000, s2:1 3x
s3: put-remove: original = 1000 8 to the 1 6th power (i.e. 125 to the 1 6th power).
-
Ah a, b, c three-point non-collinear vector ab equals vector bc uncollinear vector ab=vector bc=0 vector ab=(1,-4) vector bc=(x-3,2) solution gives x≠5 2(x r).
2) Because m is on a straight line oc, let 0m(6x,3x) ma=(2-6x,5-3x) mb=(3-6x, 1-3x) because ma mb
ma multiplied by mb=0 to get m as (2,1) or (22 5 ,11 5).
I did it last week Trust me Adopt it o( o thank you.
-
(1) The equation for finding the straight line ab is y=-4x+13, so that a, b, and c are not on the same straight line to form a triangle.
So, just remove the intersection of the line y=3 and the line ab y=3y=-4x+13
Solve the intersection point (,3).
Therefore, the value range of x is x≠
2) The linear oc equation y=x 2 is easily obtained
Let m(a,a 2).
Then the straight line ma is perpendicular to the straight line mb, and the following needs to be satisfied:
The product of the slopes of two straight lines is -1
k(ma)=(5-a/2)/(2-a)
k(mb)=(1-a/2)/(3-a)
5-a 2) (2-a)]*1-a 2) (3-a)]=-1 solution: a1=2 (rounded), a2=22 5
So m(22 5, 11 5).
-
(1) x is not equal to assume that the vector ab is equal to the vector bc, and it is enough to find that x is equal to).
2) m(2,1) or m(22 5,11 5).(Since m is on the straight line oc, let m(a,a 2) give the vector ma and the vector mb, so that the two vectors are multiplied by 0, and a is equal to 2 or 22 5, and then m is the above answer.) )
-
a^x+b^-b^x>=a^x^+2abx(1-x)+b^(1-x)^
(a + b -2ab) x + (2ab-2b -2a) x < = 0 )
(a-b) x - (a-b) x<=0 (a does not equal b) = x(x-1) < = 0
0<=x<=1
-
g'(x)=k/(x+1)
kx-1)/(x+1)²
k(x+1)-(kx-1)]/x+1)²
k+1)/(x+1)²
g(x) is the increasing function, g'(x)
So (k+1) (x+1).
Up (x+1) >0, so only k+1>0 is needed.
k>1f(x)=e g(x)0, so take the logarithm on both sides.
g(x)0).
t(0)<0,t(0)
1<0, satisfied.
t(x) is a non-increasing function, x>0).
t'(x)k+1)/(x+1)²-1/(x+1)k-x)/(x+1)²
t'(x) is a non-additive function when <=0.
So if for any x (0, + there is (k-x)<=0, there is only k<=0
Mathematical induction.
Let the left f(n) and the right g(n).
When n=1, left = ln(1+1*2) = ln(3)>0 right = 2*1-3
So on the left side and on the right side, the inequality holds.
Suppose n-1 is true (n>2).
f(n-1)>g(n-1)
then f(n)=f(n-1)+ln(1+n(n+1))g(n)=2*n-3=2*(n-1)-3+2=g(n-1)+2f(n)-g(n)=f(n-1)+ln(1+n(n+1))-g(n-1)+2).
f(n-1)-g(n-1)]+ln(1+n(n+1))-2ln(1+n(n+1))-2
Because n>2, ln(1+n(n+1)).
ln(7)>2
So f(n)-g(n)>0, f(n)>g(n), i.e., as long as f(n-1) >g(n-1), there is always f(n)>g(n), so the original inequality holds.
Solution analysis: unary equations, shift terms, merge similar terms, make coefficients into one, and find the result.
60 Solution: Suppose there are x ducks in total According to the title: >>>More
1. Let the residual amount be y, then, y=10t - 24 (5t) +100[ 10t)] 2 - 2* 10t) *6 2) +6 2) 2 -(6 2) 2 +100 >>>More
A cylinder consists of two bases, one side.
So a piece of paper can do 3 sides, which is the side of 3 cylinders. >>>More
Because x 2 + y 2 > = 2xy
y^2+z^2>=2yz >>>More