-
sin3asin(2a+a)
sin2acosa+cos2asina
2sina(1-sin²a)+(1-2sin²a)sina3sina-4sin³a
cos3acos(2a+a)
cos2acosa-sin2asina
2cos²a-1)cosa-2(1-cos²a)cosa4cos³a-3cosa
sin3a=3sina-4sin³a
4sina(3/4-sin²a)
4sina[(√3/2)²-sin²a]
4sina(sin²60°-sin²a)
4sina(sin60°+sina)(sin60°-sina)4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]
4sinasin(60°+a)sin(60°-a)cos3a=4cos³a-3cosa
4cosa(cos²a-3/4)
4cosa[cos²a-(√3/2)²]
4cosa(cos²a-cos²30°)
4cosa(cosa+cos30°)(cosa-cos30°)4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*
4cosasin(a+30°)sin(a-30°)-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
4cosacos(60°-a)[-cos(60°+a)]4cosacos(60°-a)cos(60°+a)The above two equations can be compared.
tan3a=tanatan(60°-a)tan(60°+a)
-
Proof of the triple angle formula.
Idea: Trilogy: first decompose 3x into 2x+x, and use the sum angle formula; Then use the doubling angle formula to unify into a single angle x; Finally, it is simplified into a function, which is easy to remember and use.
The sinusoidal formula for the triple angle.
sin3x=3sinx-4sin^3 x
Proof: sin3x
sin(2x+x) (decomposed into 2x+x).
sin2xcosx + cos2xsinx (and angular sinusoidal formula).
2sinxcosxcosx+(1-2sin2 x)sinx (unified into a single angle x with the cosine formula).
2sinx(1-sin 2 x) + 1-2sin 2 x)sinx(reduced to a function).
3sinx-4sin^3 x
The cosine formula for the triple angle.
cos3x=4cos^3x-3cos x
Proof of: cos3x
cos(2x+x) (decomposed into 2x+x).
cos2xcosx-sin2xsinx (and angular cosine formula).
2cos 2 x-1) cosx-2sinxcosxsinx (unified into a single angle x with the cosine formula).
2cos 2 x-1)cosx-2cosx(1-cos 2 x) (reduced to a function).
4cos^3 x-3cosx
Tangent formula for triple angles.
tan3x=(3t-t 3) (1-3t 2), where t=tanx.
Proof : Let t = tanx, tan2x=2t (1-t 2).
tan3x=tan(2x+x) (decomposed into 2x+x).
tan2x+tanx) (1-tan2x tanx) (and tangent formula).
2t (1-t 2)+t] [1-2t (1-t 2) t] (unified into a single angle x by the doubling tangent formula).
3t-t 3) (1-3t 2), where t=tanx. (Simplify).
Application examples: Verification: tan3x=tan(60+x)tan(60-x)tanx
Proof: Let t = tanx
tan(60+x)=(√3+t)/(1-√3t)
tan(60-x) =(√3-t)/(1+√3t)
tan(60+x)tan(60-x)tanx
3-t^2)t/(1-3t^2)
tan3x (triple tangent formula).
-
2x Angle Formula:
1) sin2a=2sinacosa 。
2) cos2a=2(cosa)^2-1=1-2(sina)^2 。
3) tan2a=2tana/[1-(tana)^2]。
Derivation process: 1) sin2a=sin(a+a)=sinacosa+cosasina=2sinacosa.
2) cos2a=cos(a+a)=cosacosa-sinasina=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2 。
3) tan2a=tan(a+a)=(tana+tana)/(1-tanatana)=2tana/[1-(tana)^2]。
2-fold angle transformation relation
Double angle formula.
Trigonometric value through the angle.
Some transformations of the Yuru Spike relation are used to represent the trigonometric value of its double angle 2, and the double angle formula includes the double angle formula of the rubber core string and the cosine.
The formula for the double angle as well as the formula for the tangent double angle.
In the calculation, it can be used to simplify the calculation formula and reduce the number of trigonometric functions, which is also widely used in engineering.
-
Sine double angle formula:
sin2α =2cosαsinα
Derivation: sin2a=sin(a+a)=sinacosa+cosinaina=2sinacosa
Cosine double angle formula:
The formula for the disadvantage of cosine double angle has three sets of representations, and the three sets of forms are equivalent:
1、cos2α =2(cosα)^2 − 1
2、cos2α =1 − 2(sinα)^2
3、cos2α =cosα)^2 − sinα)^2
Derivation: cos2a=cos(a+a)=cosacosa-sinasina=(cosa) 2-(sina) 2=2(cosa) 2-1=1-2(sina) 2
Tangent double angle formula:
tan2α=2tanα/[1-(tanα)^2]
Derivation: tan2a = tan(a+a) = (tana + tana) (1-tanatana) = 2tana [1-(tana) 2].
The formula of the double angle of the rock is expressed by some transformation of the trigonometric value of the angle of the angle, which includes the formula of the sine double angle, the formula of the cosine double angle and the tangent double angle formula.
It can be used to simplify the calculation formula and reduce the number of trigonometric functions in calculations, and it is also widely used in engineering.
-
The detailed process of deriving the induction formula is:
Since sin(- sin, sin( sin =sin(- let b= then b, substituting the two formulas into the above formula, we get sin(b)=sin( b). Rewrite b in the above equation to , that is, sin( shu) sin.
Derivation of the general formula:
sin2 2sin cos 2sin cos repentance, (because cos2( )sin2( )1) and divide the fraction up and down by cos 2 ( ) to get sin2 2tan and then replace it with 2. In the same way, the general formula of the front space conduction cosine can be deduced. The general formula for tangent can be obtained by sine ratio cosine.
The triple angle formula derives tan3 sin3 cos3 = (sin2 cos cos2 sin) cos2 sin ) cos2 sin2 sin )=cos3( )cos sin2.
2sin2( )cos is divided by cos3( ) to obtain: tan3 sin3 sin(2 sin2 cos cos2 sin = 2sin cos2( )sin.
2sinα-2sin3(α)sinα-2sin3(α)3sinα-4sin3(α)cos3α=cos(2α+αcos2αcosα-sin2αsinα=cosα-2cosαsin2(α)2cos3(α)cosα=4cos3(α)3cos。
-
The triple angle formula is an identity that expresses trigonometric functions of the shape sin(3x), cos(3x), etc., with the corresponding haplotype trigonometric functions. It is applied to mathematics, physics, astronomy and other subjects.
N-fold angle formula.
According to Euler's formula (cos + isin) n = cosn + isinn
The binomial theorem on the left is used to separate the real and imaginary parts to get the following two sets of formulas.
-
Triple angle formula: sin(3) = 3sin -4sin 3 = 4sin ·sin(60° + sin(60°-
cos(3α) = 4cos^3α-3cosα = 4cosα·cos(60°+αcos(60°-α
tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) = tanαtan(π/3+α)tan(π/3-α)
The formula for triplicate angles in this paragraph is derived:
sin(2a+a)
sin2acosa+cos2asina
2sina(1-sin^2a)+(1-2sin^2a)sina
3sina-4sin^3a
cos(2a+a)
cos2acosa-sin2asina
2cos^2a-1)cosa-2(1-cos^2a)cosa
4cos^3a-3cosa
1)sin3a=3sina-4sin^3a
4sina(3/4-sin^2a)
4sina[(√3/2)^2-sin^2a]
4sina(sin^260°-sin^2a)
4sina(sin60°+sina)(sin60°-sina)
4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°+a)/2]
4sinasin(60°+a)sin(60°-a)
2)cos3a=4cos^3a-3cosa
4cosa(cos^2a-3/4)
4cosa[cos^2a-(√3/2)^2]
4cosa(cos^2a-cos^230°)
4cosa(cosa+cos30°)(cosa-cos30°)
4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*
4cosasin(a+30°)sin(a-30°)
4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
4cosacos(60°-a)[-cos(60°+a)]
4cosacos(60°-a)cos(60°+a)
In summary, the above two formulas can be compared.
tan3a=tanatan(60°-a)tan(60°+a)
-
The detailed process of deriving the induction formula is:
Since sin(- sin, sin( sin =sin(- let b= then b, substituting the two formulas into the above formula, we get sin(b)=sin( b). Rewrite b in the above equation to , that is, sin( shu) sin.
Derivation of the general formula:
sin2 2sin cos 2sin cos repentance, (because cos2( )sin2( )1) and divide the fraction up and down by cos 2 ( ) to get sin2 2tan and then replace it with 2. In the same way, the general formula of the front space conduction cosine can be deduced. The general formula for tangent can be obtained by sine ratio cosine.
The triple angle formula derives tan3 sin3 cos3 = (sin2 cos cos2 sin) cos2 sin ) cos2 sin2 sin )=cos3( )cos sin2.
2sin2( )cos is divided by cos3( ) to obtain: tan3 sin3 sin(2 sin2 cos cos2 sin = 2sin cos2( )sin.
2sinα-2sin3(α)sinα-2sin3(α)3sinα-4sin3(α)cos3α=cos(2α+αcos2αcosα-sin2αsinα=cosα-2cosαsin2(α)2cos3(α)cosα=4cos3(α)3cos。
First, divide the circle into n small sectors, when the central angle of each small sector. >>>More
Normally, it's not that hard to remember.
As a unit circle, as 0, , the terminal edge of the angle, and the coordinates of the intersection point of the terminal edge and the unit circle are a(1,0)b(cosα,sinα) >>>More
High school mathematics double angle formula beam difference: sin2 = 2sin cos, double angle formula is a group of formulas commonly used in mathematical trigonometric functions, through some transformation relations of the trigonometric value of the angle to express the trigonometric value of its double angle 2, the double angle formula includes the sine double angle formula, the cosine double angle formula and the tangent double angle formula. >>>More
That's what I want to know.