Known sinx 2cosx 3 2sinx 2cosx 0, then the value of sin2x 2cosx 1 tanx is ? Ask God for help

Updated on educate 2024-05-06
8 answers
  1. Anonymous users2024-02-09

    From [sinx-2cosx][3+2sinx+2cosx]=0, sinx-2cosx=0 or sinx+cosx=-3 2 can be obtained because the minimum value of (sinx+cosx) is -root number 2>-3 2, so sinx+cosx=-3 2 is rounded off i.e. sinx-2cosx=0 so sinx=2cosx so sinx cosx=tanx=2 so 1=(sinx) 2+(cosx) 2=(2cosx) 2+(cosx) 2=5(cosx) 2, so (cosx) 2=1 5 so sin2x=2(sinx)*(cosx)=2(cosx)*(cosx) =4(cosx) 2=4 5 So [sin2x+2(cosx) 2] (1+tanx)=(4 5+2 5) (1+2)=2 5

  2. Anonymous users2024-02-08

    1)(sinx-4cosx) (5sinx+2cosx)=(2cosx-4cosx) dust omen (10cosx+2cosx)=-2 12=-1 6(2)(sinx) 2+2sinxcosx=4(cosx) 2+4(cosx) 2=8(cosx) 2=8 [1+(tanx) 2]sinx=2cosx tanx=2 original = 8 pie rent[1+2 2]=8 5

  3. Anonymous users2024-02-07

    1.Using (sinx) 2+(cosx) 2=1, we can see that 2(cosx) 2+3cosxsinx-3(sinx) 2=(cosx) 2+(sinx) 2, so (cosx) 2+3cosxsinx-4(sinx) 2=0Divide the two sides of the equation by (cosx) 2 at the same time, and note that sinx boming pants cosx=tanx gives 1+3tanx-4(tanx) 2=0, so the base Jane has (4t...

  4. Anonymous users2024-02-06

    The original numerator and denominator are divided by cos 2x at the same time.

    1+tan 2x-2tanx) (1-tan 2x)=(1-tanx) 2 limb disturbance((1-tanx)(1+tanx))=1=tanx) (1+tanx)

    You copied the question incorrectly. That's the way it works.

    ps:sin 2x+cos 2x=1 equation left and right and divide cos 2x to get the front hunger 1 Huishan cos 2x=tan 2x+1So there's the first step.

  5. Anonymous users2024-02-05

    It can be obtained from [sinx-2cosx][3+2sinx+2cosx]=0.

    sinx-2cosx=0

    or rent a brother who rolls forward.

    sinx+cosx=-3/2

    However, since the minimum value of (sinx+cosx) is -root number 2>-3 2, sinx+cosx=-3 2 is rounded.

    i.e. sinx-2cosx=0

    So sinx=2cosx

    So sinx cosx=tanx=2

    So 1=(sinx) 2+(cosx) 2=(2cosx) 2+(cosx) 2=5(cosx) 2, so (cosx) 2=1 5

    So sin2x=2(sinx)*(cosx)=2(2cosx)*(cosx)=4(cosx) 2=4 5

    So [sin2x+2(cosx) 2] (1+tanx)=(4 5+2 5) (1+2)=2

  6. Anonymous users2024-02-04

    If it is known that (sinx-2cosx)(3+sinx+2cosx)=0, then sinx-2cosx=0 sinx=2cosx or 3+sinx+2cosx=0

    Because -1 sinx 1 -1 cosx 1, 3+sinx+2cosx 0

    This is true if and only if sinx=-1 cosx=-1, but sinx and cosx cannot =-1 at the same time

    Then only sinx=2cosx is true.

    Square sin x = 4cos x

    1-cos²x=4cos²x

    5cos²x=1

    cos²x=1/5

    sin2x+2cosx) (1+tanx)=(2sinxcosx+2cos x) (1+sinx cosx)=2cosx(sinx+cosx) [(sinx+cosx) cosx].

    2cos²x

  7. Anonymous users2024-02-03

    Knowing that (s-2c)(3+s+2c)=0, then (sin2x+2cos x) (1+tanx) is like this? So.

    sin2x+2cos²x)/(1+tanx)=2s * c + 2c²

    1+s/c2s * c² +2c³

    c+s=2(s+c)c²

    s+c=2c²

    Then just find the value of cos x.

    0=(sinx-2cosx)(3+sinx+2cosx)=>

    sinx-2cosx=0 or 3+sinx+2cosx=0 and obviously sx and cx can't get -1 at the same time, so.

    sinx-2cosx=0

    s-2c=0

    s=2cs²=4c²

    1-c²=4c²

    c²=1/5

    So to be asked. 2c²

  8. Anonymous users2024-02-02

    It can be obtained from [sinx-2cosx][3+2sinx+2cosx]=0.

    sinx-2cosx=0 or.

    bai sinx+cosx=-3/2

    However, because the minimum value du of (sinx+cosx) is -root zhi2>-3 2, daosinx+cosx=-3 2 is rounded.

    i.e. sinx-2cosx=0 so version.

    weight sinx=2cosx

    So sinx cosx=tanx=2

    So 1=(sinx) 2+(cosx) 2=(2cosx) 2+(cosx) 2=5(cosx) 2, so (cosx) 2=1 5

    So sin2x=2(sinx)*(cosx)=2(2cosx)*(cosx)=4(cosx) 2=4 5

    So [sin2x+2(cosx) 2] (1+tanx)=(4 5+2 5) (1+2)=2 5

Related questions
10 answers2024-05-06

Solution: Because f(x) = 3sin x-2sin 2( x 2) 3sin x+cos x-1 >>>More

8 answers2024-05-06

25(sinx)^2+sina-24=0

How can there be an x? >>>More

17 answers2024-05-06

y'=3x^2-4x+1x=1,y'=0y extremum=3

1 For example: Ling F'(x)=3x²-3=0 >>>More

10 answers2024-05-06

There is no doubt that the S4 is necessarily better than the Xiaomi Mi 2S. Now the S4 parallel goods are about 3500, and the Xiaomi Mi 2S 32G is 2299. In terms of cost performance, 2S is higher. >>>More